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Abstract

Recent observations of shock-induced radiation from oxides, silicates and
metals of geophysical interest constrain the shock-compressed temperature of
these materials. In these experiments, a projectile impacts a target consisting of
a metal driver plate, metal film or foil layer, and transparent window. We
investigate the relationships between the temperature inferred from the
observed radiation and the temperature of the shock-compressed film or foil
and/or window. Changes of the temperature field in each target component
away from that of their respective shock-compressed states occur because of: 1)
shock-impedance mismatch between target components, 2) thermal mismatch
between target components, 3) surface roughness at target interfaces, and 4)
conduction within and between target components. In particular, conduction
may affect the temperature of the film/foil-window interface on the time scale
of the experiments, and so control the intensity and history of the dominant
thermal radiation sources in the target. We use this type of model to interpret

the radiation emitted by a variety of shock-compressed materials and interfaces.

In a series of experiments on films (~ 1 um thick) and foils (~ 10-100 um
thick) of Fe in contact with Al,O5 and LiF windows, Fe at Fe-Al,O; interfaces
releases from experimental shock-compressed states between 245 and 300 GPa
to interface states at pressures between 190 and 230 GPa, respectively, and tem-
peratures between 4000 and 8000 K, respectively. These temperatures are are
~ 200-1500 K above model calculations for Fe experiencing no reshock at ideal
(smooth) Fe-Al,Oj interfaces. We attribute this discrepancy to localized dissi-
pation at the Fe-Al,O3 interface, producing higher interface temperatures than
uniform compression and energy transfer. This behavior is observed for both Fe
foils and films. Both 190 GPa, localized heating due to gaps or interface-surface

roughness does not apparently affect the temperature of Fe-Al,O5 interfaces. In
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contrast, from the same range of shock states, Fe at Fe-LiF interfaces releases
to states between 130 and 160 GPa (because it has a lower shock impedance
than Al,O3); both the data and model imply that Fe-LiF interfaces respond
ideally to shock-compression up to 140 GPa (where the data end). Both the
Fe-Al,O3 data and the model suggest that the degree of reshock and localized
heating is strongly pressure-dependent above the solid Fe-liquid Fe phase boun-
dary. LiF appears to be a more ideal window than Al,0O; also because it is a
poorer thermal inertia (i.e., kpc,, where k is the thermal conductivities, p is the

mass density, and c; is the specific heat at constant pressure) match to Fe than

is A.1203.

In the absence of energy sources and significant energy flux from other
parts of the target, the rate of change of the film/window or foil/window, inter-
face temperature, dT(t)/dt, is proportional to -pexp(-u?), where
p = &, /2V5t, &, is the thickness of the high-temperature (reshocked) zone in
the film/foil layer at the film/foil-window interface, k, is the thermal diffusivity
of the film/foil material, and 0<t<t,,, (t., is the time scale of the experiment,
200-400 ns). On this basis, the temperature of a thin (6,,<< 2\/%) reshocked
layer relaxes much faster than that of a thick (6w,>>2m) layer. We esti-
mate \/-h:Ft—e,q,NlO pm for Fe under the conditions of Fe-Al,O; and Fe-LiF inter-
faces at high pressure. In this case, a 100-um-thick reshocked Fe layer would
relax very little, remaining near T, (0) on the time scale of the experiment,
while a 1-um-thick reshocked Fe layer would relax on a time scale of < 10 nsec,
which is much less than ¢, , to a temperature just above T, (o0), i.e., the tem-

perature of the ideal (smooth) interface.

Greybody model fits to radiation from an Fe film-Al,O; interface resolve a
gradually increasing effective greybody emissivity, égb(t), and a gradually

decreasing greybody temperature, T,,(t). This behavior is characteristic of most
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Fe-Al,O; interface experiments. The decrease of T,(t) can be explained in
terms of the reshock model for the film/foil-window interface temperature,
Tp{t). For this experiment, the model implies that the thickness of the
reshocked film layer, &, is approximately equal to the conduction length scale
in the film, m (~10 pm for Fe). Further, assuming 1) Ty (t) = Ty(t), 2)
the thermal inertia of the film is an order of magnitude less than the window,
and 6,,,,\,52\/23;, the greybody constrains the temperature rise due to localized
heating through reshock, AT,, to <2000K. A slight decrease of the Al,Oq
absorption coefficient upon shock compression can explain the slight increase of
€p(t) with time; this may be consistent with the low-pressure observation that

the refractive index of Al,O; seems to decrease with pressure.

In contrast to the Fe-Al,05 results, greybody fits to radiation from an Fe
foil-LiF interface show a relatively constant greybody temperature, and a
decreasing greybody emissivity. The constant greybody temperature implies a
constant interface temperature, as expected for an interface experiencing
minimal reshock, while the decaying &,(t) is consistent with a shock-induced
increase in the absorption coefficient of LiF. Setting Ty {0) = T,,(0), we fit a
simplified version of the full radiation model to these data and obtain an esti-
mate of the absorption coefficient (~100 m™!) of LiF shock-compressed to 122
GPa.

Shock-compressed MgO radiates thermally at temperatures between 2900
and 3700 K in the 170-200 GPa pressure range. A simple energy-transport
model of the shocked-MgO-targets allows us to distinguish between different
shock-induced radiation sources in these targets and to estimate spectral
absorption-coefficients, a,,., for shocked MgO (e.g., at 203 GPa, Ao~ 6300,
7500, 4200 and 3800 m~!, at 450, 600, 750 and 900 nm, respectively). The

experimentally inferred temperatures of the shock-compressed states of MgO are
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consistent with temperatures calculated for MgO, assuming that 1) it deforms as
an elastic fluid, 2) it has a Dulong-Petit value for specific heat at constant
volume in its shocked-state, 3) it undergoes no phase transformation below 200
GPa, and 4) the product of the equilibrium thermodynamic Gruneisen’s parame-

ter, 7, and the mass density, p, is a constant and equal to 4729.6 kg/m?>.

Optical radiation from shock-compressed crystal CaMgSi,Og (diopside) con-
strains crystal CaMgSi,Og Hugoniot temperatures of 3500-4800 K in the 150-170
GPa pressure range, while glass CaMgSi,Og, with a density 87% of that of crys-
tal CaMgSi,Og, achieves Hugoniot temperatures of 3600-3800 K in the 105-107
GPa pressure range. The radiation history of each of these materials implies
that the shock-compressed states of each are highly absorptive, with effective
absorption coefficients of >500-1000 m~!. Calculated Hugoniot states for these
materials, when compared to the experimental results, imply that crystal
CaMgSi,Og Hugoniot states in the 150-170 GPa range represent a high-pressure
phase (HPP) solid (or possibly liquid) phase with an STP density of ~~41004-200
kg/m3, STP Gruneisen’s parameter of ~1.5+0.5 and STP HPP-LPP specific
internal energy difference, Aei“‘ﬂ, of 0.94+0.5MJ/kg. These results are con-
sistent with a CaSiO3;-MgSiO; perovskite high-pressure phase assemblage. For
glass CaMgSi,O¢, we have the same range of HPP properties, except that Aeio“ﬂ
is 2.340.5 MJ/kg, a strong indication that the glass CaMgSi,O¢ Hugoniot states
occupy the liquid phase in the system CaMgSi,O;. Comparison of the
pressure-temperature Hugoniot of crystal CaMgSi,O4 with the Hugoniots of its
constituent oxides (i.e., SiO,, CaO and MgO) demonstrates the primary
influence of the HPP STP density of these materials on the magnitude of the
temperature in their shock-compressed states. The crystal Di pressure-
temperature Hugoniot constrained by the experimental results lies at 2500-3000
K between 110 and 135 GPa, within the plausible range of temperature profiles

in the mantle near the core-mantle boundary.
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In the context of the above model considerations, we constrain the
Hugoniot temperature of Fe shock-compressed to 300 GPa via thermal radiation
from the Fe film/foil-window interfaces discussed above. The temperature of
the film/foil-window interface is obtained from measurements of the spectral
radiance of the interface, for the duration of the shock transit through the win-
dow, using a 4-wavelength optical radiometer. The model indicates that the
experimental observations constrain the interface temperature, rather than the
the temperature of the AlyO3 or LiF windows. Our results further imply that
Al,O3 remains at least partially transparent to at least 230 GPa and ~ 9,000 K.
Without correcting the Hugoniot temperatures inferred from the interface tem-
peratures for the effects of reshock, we infer a melting temperature of Fe along
its Hugoniot of 67004400 K at 243 GPa. Combining these estimates with the
lower-pressure (<100 GPa) static Fe melting data of Williams and Jeanloz
(1986), we infer a melting temperature for Fe of approximately 7800+500 K at
the pressure of the Earth’s outer-inner boundary. Assuming that Fe or an Fe-
light element alloy is forming the inner core from an Fe-light element mixture in
the liquid outer core, this temperature also represents an upper bound to the

temperature at the outer-inner core boundary.

Liquid-state and solid-state model fits to melting data for Fe, FeS and FeO
provide constraints for calculating ideal phase relations in Fe-FeS and Fe-FeQ
systems in the pressure range corresponding to the earth’s outer core. The
liquid-state model fit to the Fe melting data of Williams and Jeanloz (1986)
places constraints on the temperature and other properties along the liquidus
above the range of their data. The temperature along the best-fit Fe liquidus is
5000 K at 136 GPa and 7250 K at 330 GPa, which is somewhat lower than that
implied by the Hugoniot results (~ 7800 K). This discrepancy may be due to
the reshock effect discussed above, or some inaccuracy in the extrapolation,

presuming the Hugoniot results represent the equilibrium melting behavior of




Fe. Constraints on the solidi of FeS and FeO from the comparison of data and
solid-state model calculations imply that FeS and FeO melt at approximately
4610 K and 5900 K, respectively, at 136 GPa, and approximately 6150 K and
8950 K, respectively, at 330 GPa. Calculations for the equilibrium thermo-
dynamic properties of solid and liquid Fe along the coincident solidus and
liquidus imply that the entropy of melting for Fe is approximately independent
of pressure at a value of approximately R (where R is Ryberg’s constant), while
the change in the molar heat capacity across the transition increases with pres-
sure from approximately 0.5 R to 4R between standard pressure and 330 GPa.
We use these constraints to construct ideal-mixing phase diagrams for Fe-FeS
and Fe-FeO systems at outer core pressures, assuming that Fe and FeS, or Fe
and FeO, respectively, are the solid phases in equilibrium with the liquid Fe-FeS
or Fe-FeO mixtures, respectively. The composition of the Fe-X (X=0 or 8)
liquid mixture relative to the eutectic composition of the Fe-FeX system deter-
mines whether Fe or FeX will solidfy at the liquidus. For these ideal mixing
calculations, the eutectic composition is controlled by the ratio of the end-
member (i.e., Fe and FeX) melting temperatures at a given pressure. If Fe and
FeX have the same melting temperature, for example, the eutectic composition
is 25 mole % X; if the melting temperature of FeX is greater or less than Fe,
the eutectic composition will be displaced to more Fe or FeX rich compositions,
respectively. Since, as quoted above, the melting temperature of FeO is about
1500 K greater than that of Fe at 330 GPa, which is in turn about 1000 K
greater than that of FeS at this pressure, we note that calculated Fe-FeO eutec-
tic compositions at 330 GPa (15-20 mole % O) are less than 25 mole % O, while
calculated Fe-FeS eutectic compositions at 330 GPa (23-30 mole % S) are gen-
erally greater than 25 mole % S. The mass density of the Earth’s outer core
just above the inner core boundary is approximately 12160 kg/m3, and we note

that this is also the density of an ideal mixture of 93 mole % Fe and 7 mole %
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S (i.e., 14 mole % Fe8), and a similar mixture of approximately 72 mole % Fe
and 28 mole % O (56 mole % Fe0). Consequently, these calculations and con-
siderations imply that an O-rich outer core is more likely to lie on the FeO-rich
side of the Fe-FeX eutectic, while an S-rich outer core is more likely to lie on

the Fe-rich side of the Fe-FeX eutectic.

The temperature of the Fe-FeS eutectic are lower than the Fe-FeO eutec-
tic, being approximately 5000 K at 330 GPa. Note that the eutectic tempera-

ture represents a lower bound to temperatures at the outer-inner core boundary

under the hypothesis that this boundary represents the liquidus in an Fe-X mix-
ture. Eutectic and end-member melting temperatures in both the Fe-FeS and

Fe-FeO systems imply, in the context of the outer-inner core boundary-phase
boundary hypothesis, that previous widely-accepted temperature profiles for the
outer core, ranging from <3000 K at the 136 GPa, the core-mantle boundary,
to <4200 K at 330 GPa, the outer-inner core boundary, are about 1000-1500 K
too low. This possibility implies that at least one boundary layer of 1000-1500

K exists in the mantle, possibly at its base in the D'’ region.
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Introduction: Shock Compression and Continuum Mechanics

In this thesis I explore certain aspects of the thermomechanical response of
selected silicates, oxides and metals of geophysical interest to shock compres-
sion, via observations of shock-induced optical radiation from these materials.
Although microscopic processes lie at the heart of each phenomenon, the experi-
mental foundation of our work requires an interpretive, conceptual framework
much more abstract and general than any particular microscopic physical
theory can provide. This framework is provided by continuum mechanics,

which enfolds and abstracts the ‘‘physics” of countless microscopic models and

viewpoints, via their appropriate mac

£ ST ; = = r= =

-5 32229

thermodynamic) limit.
With this framework, we have a representation of the phenomena partial to no

,

particular “‘microphysics,” and so accessible to all. The purpose of this intro-
duction is to outline and detail the continuum framework we use to represent

and interpret experimental results on shock-compressed materials.

In our experiments, a projectile impacts a target at velocities between 4.5
and 6.5 km/s, generating a shock wave in the target. This target is usually
composed of two or three different materials sandwiched together in a plane-
layer-style geometry (see Figure 2.1, Chapter I). From the physical viewpoint,
the shock wave is a three-dimensional region with some thickness § (typically
<10 m in the materials of interest here: Kormer, 1968), and propagates
through the material with a velocity of propagation u (typically |u|~10%*
m/s). Shock compression produces large (factor of 2 to orders of magnitude)
changes in any given Jocal thermomechanical (TM) field, i.e., TM field density,
¥ (e.g., mass density, p; note that ¢ may be a scalar, vector or higher-order ten-
sor in what follows), over 6§ and on a very short time scale (i.e.,
=6/ | u | ~10711"12 seconds), resulting in large gradients (~ | ¥ | /6) in these
TM fields across the shock-front region. We assume that these length and time

scales are sufficiently short so that, from the macroscopic viewpoint, they may




be idealized as infinitesimal and instantaneous, respectively. In this case, we
may idealize the shock front macroscopically as a moving surface, which we
designate as ¥=X(t). This surface divides the material, which we idealize as a
body B=B(t), with material boundary dB=0B(t), occupying the spatial volume
V=V (t) in Euclidean three-space, with spatial boundary 8V =9V (t), into spa-
tial regions “‘ahead” (+ region, Figure I.1a) and “‘behind” (- region, Figure 1.1a)
the shock front. This surface representation for the shock front is defined by
the limit 6—0, and we note that, in this limit, the gradients of 1 across the
shock front (mathematically) become infinite. Consequently, v loses a continu-
ous representation in V', being (mathematically) discontinuous across T in this
representation. In this case, the surface L is referred to as singular (Truesdell

and Toupin, 1960, Sect. 173) with respect to 1, such that
¥l =v -9+ #0 [L.1]

where [|4]] is the “jump” of 4 across £, and 9" and 9 are the limiting values
of 9 “just” ahead and behind X, respectively. Note that ¥ is oriented such
that u-¥>0, where ¥ is the unit normal vector to £ (Figure L.1a), and ()
represents the inner vector product operator. This concept of a singular surface
forms the basis for the continuum mechanical description of shock compression.
We assume that £ possesses no fields or properties other than a motion (i.e., u;
it can be much more complicated). As is commonly done, we write all and
higher-order tensors in boldface or component form in what follows, and the
summation convention applies for all diagonally-repeated roman or greek

indices.

Since % usually changes with time during the experiment, we need to for-
mulate relations for how 1 changes with time in V', and across 8V and &, i.e.,
we need to formulate a balance relation for 1. We are particularly interested in

a balance relation for % across £ when X is a shock front, but for now &




av+
/

Figure I.1 -



represents any singular surface for Y. Now, from the macroscopic-experimental
viewpoint, we can really only formulate a balance relation for the total

“amount” of ¥ in V, t.€.,
v =9(t) = [pav [1.2].
Vv

Following the classic approach, we let B—V deform and keep track of the
instantaneous value of ¥. In particular, we assume ¥ may change with time

via 1) production of ¥ in V, i.e.,

P(g)=P(g)(t) = f P( ¢,)d'v [1.3]
| 4

and 2) the net total transport of ¥ out of V through 8V, i.e.,
Fy=Fyt) = [ £ hda 4]
av

In [L.3], P, is the total production and/or supply, P(y) is the production-supply
density of ¥ in V, which is assumed continuous in V. Also, in [I.4], F is the
net amount of % transported out of V, f(,,,) is the net efflux of ¥, or flux of ¥
out of, V, i is the unit outward normal vector to 3V, da is an infinitesimal
area element on 8V, and f(,,,) is assumed continuous on V. With these, the

instantaneous rate of change of ¥ in B is represented by the global balance, t.e.,

d
-a-t-‘ll =Py -Fqy [1.5]
or
d N
E{f’lﬁdv =fp(,/,)dv —ff(,,,ynda [1.6]
v | 4 v

Assuming that ¢ and its first partial derivatives are continuous in V', the Rey-

nolds’ transport theorem (e.g., Truesdell and Toupin, 1960, Sect. 81) implies




that the change in the total amount of ¥ with time is also given by
< [udv = [[8,0 + v-(uv)ldv [L7]
dt <, v

In [I.7], ¥ is the spatial gradient operator, and v is the displacement velocity of
the material since V and OV instantaneously coincide with B and 8B, by
definition. In this sense (i.e., instantaneous), V is a fixed material volume, and
0V a fixed material boundary. If we further assume that i and v are continu-
ous on 8V, and that OV encloses V', Gauss’ divergence theorem (e.g., Truesdell

and Toupin, 1960, Sect. 130) implies that
[o-tov) = [yv-tida [L.8].
| 4 av

Using [1.6]-[1.8], then, we may write

Jowao = [pgav - [ v+t ada [L9]
v v av

or
fat'lbd‘v =fp(¢)dv —fV'(’l/}V+f(¢))d‘v [I.lO]
v v v

assuming that f(,/,) and its first partial derivatives with respect to space are con-
tinuous in V. We note that [[.9] and [[.10] are valid only when B does not con-
tain X, since if B does contain X, 9, v and D(y) are then in general not continu-
ous in V. Also, in this case, f(,l,) and v are generally not continuous on 8V, and
since T splits 8V, it no longer encloses V', and Gauss’ divergence theorem is no
longer valid. Consequently, when B contains ¥, we cannot use the transport
and divergence theorems as done in [I.6}-[1.8] to instantaneously balance ¢ in V
as a whole. However, since the discontinuities in 9, etc., are restricted (i.e.,

localized and isolated) to the shock front, we are free to assume that 1, etc., are




continuous in part or all of V* and V~. In this context, consider an arbitrary
subregion of V', designated v=v(t) (Figure I.1b), that encompasses part of ¥,
designated o, such that v is naturally divided into regions v+ and v~ ahead
and behind o, respectively. We assume 1, etc., are continuous in each of these
regions, and suffer at most a jump discontinuity of the form [I.1] across . The
extent of this subregion relative to V is controlled only by the continuity

assumptions imposed on %, etc., and their first partial derivatives.

Noting that the shock front forms part of the boundary of each of these regions,
let ot represent this boundary for v*, and o~ that for v~ (Figure I.1b). Then
we may draw an entire (i.e., closed) boundary around v*, i.e., dv* U o™, and
around v~, t.e., v~ U o7, where U represents the operation of union in the set
theoretic sense. Since dv*™ and dv~ are, by assumption, instantaneously
material boundaries, they move with the material displacement velocity, v;
however, o+ and 0~ move with the displacement velocity, u, of the surface, o.

Defining a general displacement velocity w such that

v on Ov
w=

4 onot [1.10]

and letting i and A~ be the outward-facing unit normal vectors to dv+ U o™
and v~ U o7, respectively, we may write a transport relation for 1 in each of

these subregions, t.e.,
d
+__ 9 —_ .
¥t = < f+ pdv = f+ B + V-(4w)]dv
v
= [owdv + [yvatda + [yruntda (L1
vt v+t ot

and

o =< f Ydv = f 8% + V-(w)|dv




- f B0dv + f dv-hda + f Yru-h~da [L.12].
v- dv~ ot

Note that we have ¥—9* on 0% and ¥—1~ on o7, by their definition above, in
the integrals over the singular surface. Now in Figure I.1b, we see that i and &

are oriented in opposite directions on o* but in the same directions on o~. In

this case, it=-¥ on o*, but A”=# on o~. Putting these into [I.11] and [.12],
we have
4+ = [ogdv + [yvitda- [yru-ida [L13]
vt vt ot
=fp(¢)dv - ff(¢)-ﬁ+da [1.14],
vt vt
and
a,¥ = [adv + [gv-ida + [yru-ida L15]
v- dv- ot
= [ oo - [ fya7da [1.16],
v- av-

where [.14] and [I.16] come from the general balance, [I.5], applied to the
regions v* U vt U o and v~ Udv~U o7, respectively. If we add [1.13] and
[I.15] together, we obtain

(¥ + ¥} = [o9dv + [ Sudv
vt v
+ [oviitda + [yv-irda + [ [uflu-ida [L15].
vt dv- 4
From [I.14] and [[.16], we also have

4{¥* + ¥} = [pydv + [pgav - [ frtida- [f, fda  [L16]
vt v” vt 8v-




Since, by assumption, ¥ is additive in v, we have
V=¥t 4 ¥ [L.17].

Further, we note that

v=vtyv- —»f=
v

=[+ L.18],

vty v v
v =dvtydv. — | = = f + [I.19],
dv dv*tudv- Jvt v
and
oc=o0tyo — f = f =f +f [1.20].
o otUo~ ot o
Also, note that At=1f"on v. With these, we may write [I.15] as
¥ = [a9dv + [yv-ida + [ [|9lu-pda 1.21),
v dv 4

which is the form of Reynolds’ transport relation appropriate for balancing ¥ in
an arbitrary region of V' where ¢ possesses at most a surface (i.e., isolated)
discontinuity. Combining [I.16] and [L.21], then, we obtain the instantaneous

balance relation for 9 in v (t) containing a part of the singular surface o(t), t.e.,

Jowdv + [wv-atda+ [yv-nnda + [[wl]u-bda
v v+t dv- c

= [pydv - [ fyyatda- [fyr0da
v vt v~

or
Jouwdo + [(wvity)ada + [ [wlu-bda = [pydv 1.22].
v 3v c v

Note that, if there is no singular surface in v, [|4|]=0 and [1.22] reduces to the




classic instantaneous balance relation for ¥, 1.e.,

[oado + [¢v-bda = [pydv - [£,-ada 1.23].
v av v av

To obtain an instantaneous balance relation for ¥ on o, we assume that the
functions 8, and P(y) are bounded in v, and that v and f(w) are defined and
continuous on both v* U dv* U o* and v~ U dv~ U o~ such that v* and fJ)
are the limiting values of v and f(¢), respectively, as vt —o™, while v- and f(:,,)
are similar limits for v and f(,,,), respectively, as v~ —o~. With these assump-
tions, the volume integrals in [1.22] vanish in the limit v —o. In this case,

[I.22] becomes

0’+

[wrvt + g)a%da + [[v + f)a7da + [[lwljudda =0 [L24]

As noted above to obtain [[.14], i¥=-¥ and Ai"=# on 0. Putting these into

[L.24], we have
[ l19(u—v) - f)1-2da = 0 [1.25]

which is the balance relation for ¥ on o.

In an appropriate coordinate system, the component form of [I.22] may be

written,
Jowav + [t + 18, da + [0t o da = [pgav  [L26]
v v o v
and
[ lwtat ) - 1)1 da = 0 [L.27]
o

(k=1,2,3) respectively. If the fields %, u* f/k,v" U,, and f(f,,)f/,, are
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homogeneous on X(t), then o(t) and da are arbitrary, and [1.27] takes the local

form
[le(a* —v*) - i§)l12 =0 [L.28]

and this is similar to the results of Truesdell and Toupin (1960, Sect. 193).
Alternatively, if there is no singular surface propagating through V, and all
relevant fields are homogeneous in VUOV, v and dv are arbitrary, and [[.27]

reduces to its local form:
8y + [k +15 » = p(y) [1.29].

Since [I1.25]-[1.29] are based solely on so-called “kinematic’ considerations, they
have no concrete physical meaning at this point. To give them such meaning,
we identify 9 with the TM fields that are balanced, or conserved, during the

deformation of B(t). These are summarized in the following table:

Table 1.1
¥ fv) P(s)
Mass P 0 0
Momentum PV —tkm pbF
Energy p(e+lv vh) qf —v,_, tkm pv, b¥ +pr
Entropy ps T-1q* P(s)

In this table, t*” are the components of Cauchy stress tensor, b¥ represents the
components of the body force, e is the specific internal energy, qf are the com-

ponents of the heat flux vector, r is the specific internal energy supply, s is the
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specific entropy and T is the absolute temperature.

The relations [I.27] and [I.28] are valid for any singular surface in the con-
text of the assumptions used to obtain them. Since we are interested in a par-
ticular kind of singular surface, s.e., the shock front, we may further reduce
[1.28], using Table L1, to the relations used for interpretation of experimental

k k

results, as follows. Defining U* =u* — v¥ as the velocity of propagation of o,

we may substitute the different manifestations of 9 from Table L.1 into [I.28] to

obtain
b)) = 0 [L.30]
the balance of mass,
16U 1 + [t 1] = 0 L1.31]
the balance of momentum,
[PUpe+3Ve v ) + (Vi t™ —q)l] = O [1.32]
the balance of energy, and
[0 — Tqqp120 [1.33]

the balance of entropy, where the last is an inequality via the requirement of a
nonnegative entropy production across the shock front. In these relations,
U(..,)EU,’ D, is the component of the propagation velocity normal to
o, t¥ =t*™ i are the components of the Cauchy stress vector, and q(f/)Eqk o
is the component of the heat flux normal to 0. The mass balance, [I.30], is the

first of the relations we use to interpret experimental results. Using [I.30], we

may simplify [I.31], [I.32] and [1.33] to
PUZIVE ] + [It* )] =0 [1.34],

PEUGlI(e+ v vE)I] + [V t™ = gl = O [1.35)],
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and
PUG sl - [T 20 136,

respectively. Note that [I.34]-[1.36] represent 5 equations in 24 unknowns:
pE, U(j’;), vEx tht et q(f), s* and T%.

From the physical viewpoint, shock compression produces a ‘‘sudden”
change in the velocity of the material in a direction normal to the the shock
front. In the context of the singular surface representation of the shock front,

we idealize this change as a discontinuity in the component of the material velo-

city normal to o, t.e.,
[|v(0)|]7£0 [1.37]

where v, = vk &, . Also, note that [Ju*|]J=0. To substitute [I.37] into [I.34]-

[I.36], we must cast these relations into normal and tangential forms. To do

this, we define 7 (@=1,2) as vectors tangent to o such that

N (1 X 1p)f 1.38]
| 1y X7 | Y

t.e., ¥, 1) and 7, form a right-handed system. In [[.38], X represents the outer
vector product operator. With these, we may resolve any vector into com-

ponents normal and tangent to ¥. In this case, we may write

vk = v(l./)i/k + vyra [1.39]
and
th =t 0t + [L.40].
Noting that
f/k I?k =1 ’ Dk Tak =90 [141],

and, assuming o is planar, that
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0 as#p4
T;Tlcﬂ=5aﬁ= {1 Cli—é-ﬂ [1.42]

we may put [.39] and [1.40] into [I.34]-[1.36] and obtain

UGVl + [itgyll =0 [I.43]
PFUGIVAI + [kl =0 [1.44]
UG lle + OGO + Voo Hvmet@rapll =0 [L145]
and
p*UGIsI - [IT g1l > 0 [1.46].

At this point, we make the mechanical constitutive assumption that the

material on either side of the shock front is an elastic, or barotropic, fluid, ¢.e.,

thmt — _pxghm [1.47]
With this, we have
td = t' o = 2o, = Py 0t = -p* [1.48]
via [1.34], and
tE = tTEr =1 thmtr = -Pi,rk=0 [1.49]

from [.41],. Putting [.48] and [I.49] into [I.43]-[I.46], we obtain

[Pl = #2U5 v, 150,
PFUG(lvAI =0 [L.51],
P*UGle + %V(,g,)” + [IVioybey9)ll =0 [1.52],
and
PUB N - T > 0 153

where we have used [1.51] in [1.45] to obtain [.52]. Relation [I.50] is the second
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of the relations used to interpret experimental results. Using the momentum

balance, [.43], we may write
1 1 - - 1
#Ulgvel + Motell = 3086 vered) + 7 Veiel 154
Putting this into the energy relation, [1.52], we obtain
1, - - 1
UGl = 3006t - 2 IMetell + gl
= — 2Vttt + llag] [1.55].
From the mass balance, we have

vl = p%“l’l]U(E) [1.56].

Putting this into [1.55], we obtain

_ 11 + 4= 1
lell = 5 = liCt+te) + = llags)l

1
lag)
*U3

1

= -Z[I=NP*+P7) + [1.57].
p

where we have used the elastic fluid constitutive assumption represented by

[L.47]. Finally, if we make the nonmechanical constitutive assumption that the

shock front is adiabatic, i.e., [|q(l./)|]=0, [I.57] reduces to

e el [Lat ) 58]

ot

which is the third relation used to interpret experimental shock-compression
data. Relation [I.58] is known as the Rankine-Hugoniot relation (e.g., Rice et

al., 1958). With the assumption of adiabaticity, [I.53] reduces to
1
PUGII > 1 llag; L.59]

If we further assume there is no heat flow throughout VU 8V such that q(‘;”)=0,
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[1.59] reduces to
lIsl] = 0 [1.60],

implying that the specific entropy must increase across an adiabatic shock front
separating two non-heat-conducting, elastic fluids, which is usually assumed the
case (e.g., Bethe, 1942) for shock-compression experiments. Relations [1.30],
[I.50] and [I.58] represent the balances of mass, momentum and energy, respec-
tively, used in the following chapters to interpret experimental shock-
compression results, and for various related calculations of Hugoniot, or shock-
compressed, states. Along with [.60], they constitute a thermodynamic descrip-
tion for the ‘‘experimental’ shock front.

The shock front represents a kind of boundary in the target, across which
we may use, given the necessary experimental or other information, [1.30], [1.50]
and [.58] to calculate the change in density, material velocity, pressure, specific
internal energy, etc., during shock compression. As stated above, however,
different materials make up the target, introducing a further “discontinuity”
into the field description of the target as a whole. Consequently, we must also
find the balance of mass, momentum, energy and entropy across the boundaries
between target layers. Since we assume that, as each target layer is compressed
and the shock front passes on into the next target layer during the experiment,
the layers do not separate or blow apart at their interface, this boundary may
be regarded as a material surface, such that U = v(}f), or U(;.f) = 0. This
states that, at a material surface or interface, the surface moves with the dis-
placement velocity of the material on either side of it. Consequently, at such an

interface, the balance of momentum and energy take on the forms
bl =0 » [t@ll =0 [1.61]

and
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Vo))V (abG9ell = O 1.62]

respectively, from [[.43]-[I.44] and [[.45], respectively. Further, the entropy ine-
quality, [1.46], simplifies to

S ) .63

Substituting the mechanical constitutive assumption, [.47], into [.61], the bal-

ance of momentum at a material interface in the target takes the form
[[Pl]]=0 [1.64].

Likewise, the balance of energy becomes
[Pl + llgll =0 [1.65].

Note that [I.63] is unaffected by this assumption. If we further assume that
heat flux and temperature are continuous across the boundary between each

layer, as we do in all energy-transport models presented in this thesis (see

Chapter I, Appendix C), [1.65] and {I.63] reduce to
v »Pll =0 [1.68],

and

'q(if)“%” =0 [1.67],

respectively. Note that [[.67] implies no entropy production on the boundaries
between the target components. Relations [I.64], [I.66] and [.67] then represent
boundary conditions appropriate for the assumed constitutive nature of each
target component, and consequently are consistent with the analogous shock-
front relations given above. We note that the balance of momentum across the
shock front, [I.50], combined with [[.65] for the balance of momentum at the
boundary between adjacent target components, forms the basis for the

impedance match technique (e.g., Rice et al., 1958), which is used to calculate
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the density, pressure, etc., of the high-pressure, shock-compressed states of each

target component throughout this thesis.
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Abstract

Recent observations of shock-induced radiation from oxides, silicates and
metals of geophysical interest constrain the shock-compressed temperature of
these materials. In these experiments, a projectile impacts a target consisting of
a metal driver plate, a metal film or foil layer, and a transparent window. We
investigate the relationships between the temperature inferred from the
observed radiation and the temperature of the shock-compressed film or foil
and/or window. Changes of the temperature field in each target component
away from that of their respective shock-compressed states occur because of: 1)
ween target components, 2) thermal mismatch
between target components, 3) surface roughness at target interfaces, and 4)
conduction within and between target components. In particular, conduction
may affect the temperature of the film/foil-window interface on the time scale
of the experiments, and so control the intensity and history of the dominant
thermal radiation sources in the target. Comparing this model to experimental

data from Fe-Fe-Al,03 and Fe-Fe-LiF targets, we note that:

1. Fe at Fe-Al,O3 interfaces releases from experimental shock-compressed
states between 245 and 300 GPa to interface states between 190 and 230
GPa, respectively, with temperatures =~ 200-1500 K above model calcula-
tions for Fe experiencing no reshock at smooth Fe-Al,O3 interfaces. This is
so for both Fe foils and films. Below 190 GPa, reshock heating does not
apparently affect the temperature of Fe-Al,0; interfaces. In contrast, from
the same range of shock states, Fe at Fe-LiF interfaces releases to states
between 130 and 160 GPa (because it has a lower shock impedance than
Al,0;). The data and model imply that Fe experiences little or no reshock
at Fe-LiF up to 140 GPa (where the data end), suggesting 1) that LiF
forms a more ideal interface with Fe than does Al,O3, or 2) that the Fe-LiF
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interfaces experience less shock heating than Fe-Al,O5 interfaces because
Fe-LiF interfaces reshock to lower pressures. Both the Fe-Al,03 data and
the model suggest that the degree of reshock is strongly pressure-dependent
above the solid Fe-liquid Fe phase boundary. LiF appears to be a more
ideal window than Al,O3 also because it is a poorer thermal inertia match

to Fe than is Al,03.

In the absence of energy sources and significant energy flux from other
parts of the target, the rate of change of the film (~1 pm thick)/window

interface te

(3-4 mm thick), or foil (~ 10-100 gm thick

ture, Ty (t), is proportional to ~uexp(-u?), where u = &, /2VKt, 8., is the
thickness of the reshocked zone in the film/foil layer at the film/foil-

)/window,
1 7

\pera-

window interface, «; is the thermal diffusivity of the film/foil material, and
0<t<ty, (te is the time scale of the experiment, 200-400 ns). On this
basis, the temperature of a thin (4, <<2Vkt,,,) reshocked layer relaxes
much faster than that of a thick (5Fw>>2m) layer. We estimate
\/K.,t_wfvlo pm for Fe under the conditions of Fe-Al,O; and Fe-LiF inter-
faces at high pressure. In this case, a 100-um-thick reshocked Fe layer
would relax very little, remaining near T, {0) on the time scale of the
experiment, while a 1-um-thick reshocked Fe layer would relax almost

instantaneously (i.e., on a time scale much less than t,,,) to a temperature

just above T (o0).

Greybody fits to an Fe-Fe film-Al,O; experiment produce a gradually
increasing effective greybody emissivity, ép(t), and a gradually decreasing
greybody temperature, Ty (t). This behavior is characteristic of most Fe-
Fe-Al,O; experiments. The decrease of T, (t) can be explained in terms of

the model for the film/foil-window interface temperature, T {t). For this
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experiment, the model implies that the thickness of the reshocked film
layer, &.,, is approximately equal to the conduction length scale in the film,
ViKgbexp (~10 pm for Fe). Further, assuming Tg(t) = Tpn(t), the greybody
fit constrains the amount of reshock, AT, to <2500K with o,,~0.1 and
6”,.{,2\/;‘:?“. A slight decf‘ease of the Al,O3 absorption coefficient upon
shock compression can explain the slight increase of &4(t) with time; this
may be consistent with the observation that the refractive index of Al,O;

seems to decrease with pressure.

(@]
er
er
a

in contrast ¢
foil-LiF target show a relatively constant greybody temperature, and a
decreasing greybody emissivity., The constant greybody temperature
implies a constant interface temperature, as expected for an interface
experiencing minimal reshock, while the decaying €,,(t) is consistent with a
shock-induced increase in the absorption coefficient of LiF. Setting
Tp{0) = T,(0), we fit a simplified version of the full radiation model to
these data and obtain an estimate of the absorption coefficient (~100 m™)

of LiF shock-compressed to 122 GPa.

Introduction

Traditional studies of the behavior of shock-compressed materials assess

mechanical response of these materials to shock compression (e.g., the

change of density with pressure). Since this approach cannot directly constrain

the temperature of the high-pressure state, other means are needed to provide a

complete equilibrium thermodynamic description (¢.e., pressure-density-

temperature) for these materials. To this end, recent studies record shock-

induced radiation from initially transparent materials (e.g., alkali halides, sum-

marized by Kormer, 1968; Al,O3, Urtiew, 1974; SiO, and Mg,SiO,, Lyzenga and
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Ahrens, 1980) and from opaque materials at interfaces viewed through trans-
parent or semitransparent windows (e.g., Mg, Urtiew and Grover, 1977; Ag,
Lyzenga, 1980; Fe, Bass et al., 1987). These recent observations constrain some
temperature in the target. In this paper we explore relationships between the
experimentally constrained temperature and the temperatures of different high-
pressure states achieved in the target components and at their interfaces during
the experiment. We attempt this in the context of a simple model of energy
transfer and transport in the targets. To give the model considerations some
weight, we compare model details and results to the recent observations of Bass

et al. (1987) on shock-induced radiation from Fe films and foils.

§2. Model Considerations

Consider the target depicted in Figure 2.1, representative of that used in
the experiments of Lyzenga (1980) and Bass et al. (1987). This generic target
consists of 1), a 1.5-mm-thick, metallic "driver” plate (DP), 2), a metallic film (1
to 10-um-thick) or foil (10 to 100- pm thick) layer (FL) and 3), a dielectric,
transparent window (TW, 3 to 4-mm-thick). The target is constructed so that
the shock impedance (i.e., the product of the initial density and shock wave
velocity) of the DP is greater than or equal to that of the FL, which in turn has
a shock impedance greater than or equal to that of the TW. An edge mask
(Figure 2.1) prevents the detectors from recording radiation from the edge of
the target assembly. Radiation emitted from the center of the assembly, where

uniaxial compression takes place, reflects from the mirror into the detectors.

The experiment begins when a projectile impacts the DP (Figure 2.1), gen-
erating a shock wave that propagates through the DP to the DP-FL interface.
Since this interface is formed by mechanical juxtaposition of the metallic DP
and FL surfaces, it is ‘‘rough” on a ~1 pm-scale (Urtiew and Grover, 1974).

The shock front thickness is <0.01 ym in the materials and at the pressures of
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Figure 2.1. Target assembly.
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interest (e.g., Kormer, 1968). With respect to the shock wave, then, the DP
and FL surfaces are, prior to compression, partially free. Consequently, the
shock wave accelerates the DP material at the DP-FL interface across the gap,
and simultaneously reflects from the DP surface at the DP-FL interface as a
release wave propagating back into the DP and releasing the DP to near-zero
pressure. This moving DP surface then impacts the FL surface, generating
shock waves of approximately equal magnitude that propagate backward into
the just released DP, and forward into the unshocked FL. The former shock
wave compresses the just released DP material from its low-pressure, high-
temperature release state to one with approximately the same pressure as its
previous shock-compressed state; wave reverberations quickly bring this DP
state to a state with a pressure equal to that of the shock-compressed FL and a
temperature well above that of the previous (i.e., first) DP shock-compressed
state. If the backward-propagating shock wave overtakes the release wave at
some distance behind the DP-FL interface, this distance defines the thickness of
a reshocked DP material layer at the DP-FL interface. However, if the release
wave is faster than the reshock wave, the entire DP may experience low pres-
sure release and reshock. In either case, subsequent wave reverberations quickly
bring the DP to a state with the same normal (to the interface) material veloc-

ity and stress fields as the shocked FL.

Since the DP material accelerating across the DP-FL interface impacts a
rough FL surface, a thin (on the scale of the surface roughness) layer of film or
foil material compresses, much like a porous material (Urtiew and Grover,
1974), to a much higher temperature than achieved by the shock-compressed FL
material beyond this zone. As with the DP material at the DP-FL interface, the
shock front traversing the FL reflects from a partially free surface at the FL-
TW interface as a low pressure release wave and accelerates the FL material

across the interface to impact with the TW material. Since the TW surface at
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this interface is smooth relative to the shock front thickness, and is much more
incompressible than either the DP or FL, the impacting FL. material should not
heat a thin layer of TW material, but rather only shock the TW up to high
pressure and its Hugoniot temperature. Closure of the FL-TW interface gen-
erates backward and forward traveling shock waves, and the former wave
compresses the low pressure, high temperature, released FL material to a state
with approximately the same pressure as the first FL shock-compressed state;
wave reverberations quickly bring this FL state to a state with a pressure equal
to that of the shock-compressed transparent window (shocked window: SW)
and a temperature much-higher than the first FL shock-compressed state. If
the backward-propagating shock wave overtakes the release wave, it cuts off the
zone of release/reshock in the FL material. In this case, the combined wave
releases the remaining FL material, and then the DP, to a state with approxi-
mately the same normal velocity and stress as the SW. Alternatively, if the
shock wave does not overtake the low pressure release wave, the entire FL
and/or DP is release and reshocked. In either case, subsequent wave reverbera-
tions should quickly bring both the DP and FL to states possessing normal

stress and material velocity fields equal to those of the SW.

Since the reshocked layers at each interface are significantly hotter than
the surrounding material (see Urtiew and Grover, 1974, and discussion below),
the temperature and radiation histories of targets with smooth versus rough
interfaces should be quite different. This difference should be sufficiently dis-
tinct to be experimentally resolvable, as we show below. We investigate the
dependence of the radiation history on the nature of the interface by use of
both mechanically formed foil-TW interfaces and vacuum-coated film-TW inter-
faces. In particular, we expect the vacuum-coated film-TW interface to be
much smoother than the mechanically formed foil-TW interface. However, this

assumption turns out to be somewhat naive, as shown below. Since the TW
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surface at the FL-TW interface is smooth (defined above), we presume that any

roughness of this interface is due to roughness of the FL surface there.

As the FL material at the FL-TW interface is compressed, released, and
possibly reshocked, it heats up and begins to radiate. Consequently, the
observed radiation intensity rises sharply (Figure 2.2, part A). As the shock
wave travels forward into the TW, the thickness of the SW increases (Figure
2.2, part B); consequently, so does its contribution to the total observed radia-
tion (note increase with time in Figure 2.2, part C). If the TW is highly absorb-
ing and/or scattering, or shock-compressed to such a state (as is apparent in
many experiments: Boslough, 1985), the radiation intensity from the interface
will decay with time (Figure 2.2, part C, dash-dot curve labeled fast decay); if
not, the interface source will dominate the observed radiation history (Figure
2.2, part C, continuous curve labeled slow decay) when the FL at the FL-SW
interface is at a higher temperature than the SW. The recorded radiation is the
sum of either the interface slow-decay or fast-decay contribution, and the SW
contribution. Given these possibilities, we must account for the the degree of
geometric (interface roughness) and material (shock-impedance) mismatch at
each interface, especially at the FL-SW interface, in attempting to constrain the

conditions of the FL. Hugoniot state from observed radiation.

Even if each interface has little or no roughness, the DP, FL, and TW may
shock-compress to such different temperatures that the resulting temperature
gradients between the layers drive significant relaxation of the FL-SW interface
temperature on the time scale of the experiment. Dynamic phase changes or
other energy sources and/or sinks present in the FL, FL at the interface, and/or
SW on the time scale of the experiment may also introduce time dependence
into the temperature and effective emissivity inferred from the radiation obser-
vations (Grover and Urtiew, 1974). Consequently, we must examine whether or

not the temperature profile of the compressed/released /reshocked target system
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Figure 2.2 Dynamic model geometry. Shock front reaches film/foil layer
(FL)-transparent window (TW) interface (x==0) at time t,, when
radiation is first detected. Interface radiation (iy,) dominates the
early radiation history (A). If 1) the interface temperature decays
slowly, and 2) the FL-TW interface, shocked window and shock
front remain relatively transparent, i, will dominate the observed
radiation history during the experiment (‘“ig,+slow decay” curve).
However, if the FL-TW interface and/or shock front develop
significant reflectivity, and/or the SW develops significant opacity,
inr Will decay quickly (dash-dot curve), and may fall below the
radiation intensity of the SW, i, on the time scale of the experi-
ment. The total intensity is then represented by the ‘i, +fast
decay’’ curve.
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relaxes via conductive and/or radiative transport on the time scale of the exper-
iments, leading to time-dependent (thermal) radiation sources. We must also
account for the effects through the SW, shock-front, unshocked window (USW),
and the TW free surface on the FL-SW interface and SW source radiation of
propagation (Boslough, 1984). We focus on processes at the FL-TW interface as

represented in the observed radiation.

§3. Model Assumptions

We assume all sources contributing to the observed radiation intensity are
thermal and in local thermodynamic equilibrium. We can then relate the source
intensity to the wavelength, X\, and absolute temperature, T, through the
Planck function, L,(\,T), given by

2C,

I‘Pl()"T) = )\5(e02/)‘T _ 1)

[3.1],

where C;=5.9544X107'7 W-m?/sr and C,=1.4388X102 m'K are constants.
Comparison of the observed radiation wavelength dependence with that of a
blackbody source, as represented by I,()\,T), implies that materials shock
compressed to high pressures are dominantly thermal radiators (>70 GPa:
Lyzenga et al., 1983; Boslough, 1984). At lower pressures, however, most
materials apparently radiate both thermally and nonthermally (SiO,: Kondo
and Ahrens, 1983; Brannon et al., 1984; Schmitt et al., 1986). Several of these
materials are initially dielectrics (e.g., SiO,: Lyzenga et al, 1983). The
processes responsible for this radiation (defect electronic transitions?) are

presently unidentified, but are suggested by spectrometric observations (Kondo

and Ahrens, 1983).

In principle, energy transport in the target occurs by both radiation and

conduction; our task is much more difficult if both radiation and conduction
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contribute equally to this process. In simple terms, we can understand the
likely relative contribution of radiation and conduction to energy transport
within layers and across interfaces via dimensional analysis. The relevant non-
dimensional number is known as the Stark number (Siegel and Howell, 1981),
Sky, referenced to some state R, and given by (Equation [C.18])
k= o E
3Xp D0 T

This number represents the ratio of conductive to radiative flux, whether across
a layer or within an “infinite” medium. It is composed of the material proper-
ties kg, a, and n,, t.e., the thermal conductivity, radiation absorption coefficient,
and refractive index, respectively. The remaining parameters, which may be
material, include xg, t;, T, and AT,, the governing length scale, time scale, a
reference  temperature and temperature range, respectively. Also,
Og = 5.6696 X 10°¥W/m2-K* is the Stefan-Boltzmann constant. For the layered
geometry of the target, we may associate x; with the layer thickness, t, with the
time scale of the experiment, Ty, with the shock-compressed or released tempera-
ture of the layer, and AT, with the change in temperature across a given layer
in the target such that AT_/x, reflects the magnitude of the average tempera-
ture gradient across the layer. From this parameter we see that radiative trans-
port dominates conductive transport in 1) an optically-thick (a;—o0), 2) poorly
conducting (k,—0) and/or 3) high-temperature medium, all other parameters
being finite. Applying this parameter to the balance of energy in a target con-
sisting of 2 metallic DP and FL (e.g., Fe), and dielectric TW (e.g., Al,O;), we
find (Appendix C) that Sk,~10 and ~10% for the TW and DP or FL, respec-
tively. In addition, viewing each layer as an infinite medium implies that con-
duction affects the balance of energy in both the FL and TW over a length scale
of g\/lcTexleO‘s m, where x, is a characteristic thermal diffusivity and

texp~10‘7 sec (the experimental time scale). This confines the influence of this
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process on energy transport in the target to the immediate vicinity of the inter-
face. In addition, the radiative component of the energy flux is negligible to the
balance of energy, compared to the conductive flux, in the FL, across the inter-
face, and in the shocked TW, if a, < 10" m! (Appendix C). This condition is
almost certainly satisfied for the SW (LiF: Wise and and Chhabildas, 1986;
Al,O5: Bass et al., 1987, but see Urtiew, 1974), and probably satisfied for the
FL and across the FL-TW interface (Appendix C). Note that this condition is
analogous to that for the validity of the ‘‘diffusion approximation’ to the classic
radiative transport relation (Siegel and Howell, 1981), where this approximation
becomes reasonable above the bound of a, stated. With these estimates in
mind, we may decouple radiative transport from the energy balance in the tar-
get components and across their interfaces, and treat radiation separately. We
emphasize that this analysis is limited by our ability to estimate the values of
many key properties (e.g., thermal conductivity) of the appropriate high-
pressure states of the DP and TW.

We assume that a given shock-compressed or -released state of any com-
ponent of the target contributing to the observed radiation is one of constant
and uniform density, stress, and material velocity. Consequently, our model is
not directly applicable to the low-pressure regime (<70 GPa), where many
shock-compressed materials deform heterogeneously (Grady, 1980; Kondo and
Ahrens, 1983; Schmitt et al., 1986; Svendsen and Ahrens, 1986). Such behavior
would require us to consider source distributions, spatially averaged effective
emissivities and time-dependent thermomechanical processes, all beyond the

scope of the simple equilibrium thermodynamic framework used here.
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§4.1 Initial conditions: Shock-Compressed State

The model is referenced to the first shock-compressed (Hugoniot) state of
each material in the target. Although this state is reached via a nonequilib-
rium, irreversible process (shock compression), we assume that thermodynamic
equilibrium is achieved in the Hugoniot state itself. This requires the shock-
compressed state to be one of constant, uniform density, material velocity,
stress and energy. In this context, we may connect the initial and shock-
compressed states (i.e., two different equilibrium states) via a classical thermo-
dynamic path (s e, a path connecting a series of states in equilibrium)
representing a change in specific internal energy equal to that judged by the

general balance of energy across a shock-front.

We assume that the material 1) initially occupies a state with temperature
T,, and pressure B, 2) shock compresses adiabatically and 3) as a fluid. Under
these assumptions, the general balance of energy across the shock front is

represented by the Rankine-Hugoniot relation (e.g., Rice et al., 1958)

1
e(Swh) = esip) + 5~ > P + Bl [4.1],
1
with
A
= 1 — — 4.2 .
T o [4.2]

In this relation, e(s;,p;) is the specific internal energy of the initial state with
mass density p;=p(T;B) and specific entropy s;=s(T,,B), while e(s,p,) is the
specific internal energy of the shock-compressed state with mass density
Py = P(TxP,) and specific entropy s, = s(T,,B,). The subscripts ”i” and "H”
stand for the initial and shock-compressed (Hugoniot) states, respectively. The
initial state is usually standard temperature and pressure (STP), of course, but

the following considerations apply to any initial state. Since [4.1] is valid
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whether or not shock compression induces a phase transformation in the
material, we may also write it in the form
e(sff) = e(st.8) + Sz fBu+ P,
20

appropriate for the change in specific internal energy resulting from a shock-
induced transformation of some phase «, stable at T, and P, to some other
phase f3, stable at the pressure and temperature of the shock-compressed state.
The equilibrium thermodynamic path energetically equivalent to [4.1] may be
constructed as follows (McQueen et al, 1967; Ahrens, et al, 1969). The
difference in specific internal energy between a and f at T, and P may be writ-

ten
Aefe = AeP2(T,R) = e(,4f) - e(,07) [4.3].

Unless otherwise designated, all the following relations in this section apply to a
single phase (8), so we drop the phase superscripts except when necessary for
clarity. Having connected a and S energetically at T; and P, via [4.1], we
compress [ isentropically from its density at T, and P, p, to its shock-
compressed density, p,, resulting in a change in its specific internal energy given

by

Deg(p) = elsppy) - e(spp) = f pﬂp‘lPs‘(p) dlnp [4.4],

P

where Ps‘(p) = P(s;,p) is the pressure as a function of density along the g-
isentrope centered at s;. Note that the the subscript ‘s” denotes constant
specific entropy. Since this last state and the Hugoniot state are at the same
density, p,, we may connect them by an equilibrium thermodynamic path at at
constant density. With s = s(T,p) and so Tds = ¢,dT at constant density,

where ¢, = ¢, (T,p) is the specific heat at constant volume (density), we have
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Th
e(swp) = elsond + [ ¢, (Tup)dT [4.5].
T

In [4.5], Ts(p,) = T(s;py), the temperature of the B-state at a density p, along

the f-isentrope centered at s;, is given by the solution of

olnT
{ 3np } =~ [4.6],

where ~ is the equilibrium thermodynamic Gruneisen’s parameter. Also in [4.5],

T, is the temperature of the g state with specific internal energy equal to [4.1].

ht Q AalliaxT Aouua,u, 1008uU; ANGerson,

1986), we assume < is a function of density alone, then the relation

Oe
m{ 2 } —1 14.7)
yields
1
c(s00) = (518 + —— | B o)} 45,
P tu
and from [4.6], we have
Pua
Tsi = T(spp) = T, exp L ~(p)dlnp [4.9].

Combining [4.1], [4.4], and [4.5], we obtain

fT ¢, (T, AT = —[Af= + Ae sl + 5 2 : 7y [Py + B [4.10],
T

a relation for the equilibrium thermodynamic temperature of a state of # with

specific internal energy equal to that of its Hugoniot state. We may also
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combine [4.1], [4.4] and [4.8] to obtain
%{1 - (1+-;-7H)ﬂx} [FitB] = [B (s + B] - anfAef™ + Ae(p)]  [4.11]

(e.g., Jeanloz and Ahrens, 1980). Both [4.10] and [4.11] represent the balance of
energy across the shock front, assuming that the shock-compression process con-
nects states in thermodynamic equilibrium. However, since [4.11] further
depends upon the assumption that y==(p), while [4.10] does not, these two rela-
tions are not completely equivalent. We use [4.10] to find T, as a function of P,

or p,, once we have relations for 7, Aef, Aeg, ¢, and TS:‘

We calculate 7, as a function of either v, the material velocity of shock-
compressed material, phase 8, or B, from the balance relations for mass and

momentum across the shock front (e.g., Rice et al., 1958; Appendix A),
Uy = AU [4.12]
and
P, - B = #U (%) [4.13],

by making the constitutive assumption that U;=u-v, the speed of propagation
of the shock front with respect to the material velocity of the initial state, v;, is
a function of the change or “jump’” in material material velocity across the
shock front, v,~v;. Note that U=u-v, is the speed of propagation with respect
to the shocked material, and u is the speed of displacement (i.e., the ““intrinsic”
velocity) of the shock front. For experimental U-v data, of course, U;=u and
[[v]]=v;p t.e., vy=0; also, B=0.1 MPa and T;=298 K. Such data for Fe (Brown
and McQueen, 1986) and many other materials (e.g., Marsh, 1980) are reason-

ably well-fit by a linear relation between U; and (v,~v), t.e.,
U; = a; + by(vyv) [4.14].

In [4.14], a; and b; are, respectively, the intercept and slope of the U-v relation
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centered at p2. Eliminating U; and v,~v, from [4.12]-[4.14], we obtain

pral
B,-P= _‘"“_2 [4.15]
(1 - b,y

(McQueen et al., 1967), the so-called shock wave equation-of-state. We may
rearrange this to obtain n~=n(B,), i.e.,

1
= -l - (2 - 1] .16
1
with
H= 2bi(F-R) S

The value of either [4.15] or [4.16] is limited by the validity of the linear U-v
relation, [4.14], and the fact that (B,-P)—oco as by, —1 (Prieto and Renero,
1970; Appendix A). As stated, the U-v relation, [4.14], is referenced to g, the

initial density of the low-pressure phase, a.

The change in specific internal energy along the isentrope of 3 referenced to
(T,,B) upon shock-compression, Aesl(pﬂ), is generally calculated from some
“‘equation-of-state’” (e.g., spatial finite strain: Stacey et al., 1981), P(s;,p), for 8
referenced to (T;,B). However, for shock-compressed materials, the energy bal-
ance, [4.11)], already contains such an equation-of-state, as we now show. Recall
that, to obtain [4.11], we shock-compressed the material from a density p¢ to p,,
incurring a phase transformation in the process. Imagine now that we can
shock-compress the p-phase of the material from its ‘‘initial” density,
pi=p"(T;,P), to p,. The energy balance for this “metastable’” shock-compression

locus is given by [4.11] if we replace p* with p; and set Aef-2=0, i.e.,
p .
-f{l - (1+%7u)nn} [FitB] = [Fy(p) + Bl - snndes(p) [4.18],
1

with n; = 1-p;/p,. Noting that
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Se dAe
S EY R T B
[4.18] may be written
dAes’ 1 1 . P
Pu - '7HAesl(pl-1) = _{1 - (1+?,7H)n!{} [PH+I)i] - =t [4‘20]7
dpy Pi Py

which is an ordinary differential equation for Aesl(pn). We solve this numeri-

cally, subject to the initial (p,=p;) conditions 1) Aeg(p;)=0, and 2)

{p2 l dAes‘
H de

I —rpy=r 421
p=n

If we put these initial conditions into [4.20], we find that P,{p,) should be equal
to B; however, for F,{p,) as given by [4.15], we have, with etai=1-p?/p,,

a, 2
P,
Pip) =B + —— [4.22],
(1 - byp)?

which is not equal to P, unless p;=¢7; usually, however, p;>p®. As stated above,
[4.14]-[4.16] do represent the P-p, states of the high-pressure phase, 8, but in
terms of the density of the low-pressure (initial) phase, p?, and a; and b;, which
are referenced to g and the initial state, (T;,B). So, instead of [4.15], what we
need is a relation for P, referenced to p;, rather than g2, such that B(p;)=P. To
obtain this relation, which is equivalent to the ‘“metastable’’ Hugoniot of

McQueen et al. (1967), we first define a metastable U-v relation for # Hugoniot

states, t.e.,
U = a’ + bi(vg-v) [4.23],

which is referenced to p;. Then we use [4.14]-[4.16], which provide P, as a func-
tion of p, (or vice-versa), p?, a; and b;, for B, to write a* and b’ as functions of

/%, a;, b; and p;. Doing this in Appendix A, we obtain
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p(1+bin;) }I’é

' = a(p) = (1-711){ (1bm P

3 [4.24]

and

[4(1-m;)b; + (2-m;)b;%n; - 1] }

1
b} = bi(p; =—{1 +
(ei) 4 (1-bin;)(1+bim;)

[4.25)

([A.55] and [A.56], respectively). Note that, from these relations, a‘—a; and
bf—b; as p,—p?, i.e., as n,—0. With a* and b! so constrained, we have, analo-

gous to [4.15], the relation

{a*\2,.*
PH — Pl‘ + pl(ai ) nH [4.26}’
(1 - bim)?

where we have set P'=B/p;), as given by [4.23]. Relation [4.26] is the form of
B, needed to solve [4.20] for Aeg(p,). Once we have Aeg(py) via solution of
[4.20], [4.18] provides the equation-of-state, i.e.,

Fi(p) = puvleg(py) + %‘-{1 - (1+%’7H)n;} [FAR] - R [4.27].

With pf known a priort, and a; and b; constrained from experimental U-v data,
then, we need only pf to obtain a' and b! from this method. As discussed in
Appendix A, if we know this density sufficiently well, then we also gain esti-
mates of Ks' and Ks" , the isentropic bulk modulus and its first pressure deriva-

tive, referenced to the initial state (T;,P), since

K, = ni(a’)’ [4.28]
when we assume that a* is equal to the bulk elastic wave velocity, and

K = 4bf-1 [4.29]

(Ruoff, 1967), assuming only that § shock-compresses as an elastic (or barotro-

pic) fluid (see the Introduction to this thesis).
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In Figure 4.1a, we compare Ae[py(B,)] for e-Fe as given by [4.20], based on
[4.26], with Aeg for e-Fe as given by 1) third-order spatial finite strain (Stacey
et al., 1981), 2) the third-order Ullman-Pan’kov equation-of-state (Ullman and
Pan’kov, 1976), and 3) Murnaghan’s equation-of-state (e.g., Stacey et al., 1981),
all three of which have the form Aes,=Aesi(pi,K§,Ks”, ). The parameters used
for this calculation are given in Table 4.1. For compatibility and a fair com-
parison, of course, we constrain Ks‘ and Ks'l by [4.28] and [4.29], respectively. As
noted by Somerville and Ahrens (1980), the third-order Ullman-Pan’kov relation
is compatible with the linear U-v relation, [4.14], since both make similar pred-
ictions for higher-order derivatives of K (see Appendix A). The calculations
presented in Figure 4.1a demonstrate that the value of Aes,(pﬂ) predicted by
each of these methods is essentially the same. Note that the Murnaghan isen-
trope is off-scale in Figure 4.1a. For the derivatives of Aesl(pﬂ), of course, the
minor differences between the difference expressions for Aesl(pﬂ) are magnified, as
shown in Figure 4.1b, where we plot F[p{R,)] as given by [4.27], and compare it
with the values for F [p(B)] given by the equivalent finite strain and Mur-
naghan relations. In particular, note that the energy balance equation-of-state,

[4.27], is a bit “stiffer” than either of the finite strain equations-of-state.

Energetically speaking, the difference between [4.11] and [4.18] is Aefe.
So, if we subtract [4.18] from [4.11] and let p,—p,, we obtain an estimate of

Aefe, e,

Aefe — -;-{ % - pi} [P?+P] [4.30].

From a purely equilibrium thermodynamic viewpoint, Aef- is given by

f-a(T. P
A = Ag(TR) + Tas(TR) + RR G (4,

where Agh*, As#* and Ap#° are the difference in specific free enthalpy, specific
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Figure 4.1a. Comparison of different estimates for the change in specific inter-
nal energy (SIE) along the isentrope anchored to (T,,P,), Ae,, of
¢-Fe as a function of pressure and based on the parameters for ¢-
Fe given in Table 4.1.
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Figure 4.1b. Comparison of different estimates for pressure along the isen-
trope, Psl, of e-Fe referenced to T; and P;, based on the parame-
ters for ¢-Fe given in Table 4.1.
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Table 4.1. Standard Temperature-Pressure (STP) Parameters.

e m—

Symbol e-Fe liquid-Fe Al,O, LiF Units
p 8352¢ 7952} 3086°¢ 26504 kg/m3
a 4487° 4038° 8908/ 5050 m/sec
b 1.57°¢ 1.58° 0.91/ 1.32¢

1687 130¢ 254h 689 GPa
E 5.28" 5.31° 4.32% 4.28°
¢ 4457 775¢ 1615¢ J/kg'K
o 4.3 1.6¢ 10.3! X 10°K"!
~y 1.95™ 1.32™ 1.78™
q 1.0 1.0" 1.0*
S, 3857 1250* 5804 K
T,, 1809° 2345° 845° K
k 807 467 3? W/m'K
Pe 507 0 0 nl'm

¢ Jephcoat et al. (1986).
b Calculated from p(T) = 8136.(1 — 7.608 X 10~°T): Drotning (1981).
¢ Robie et al. (1978).
¢ Van Thiel (1977).

¢ Estimated from U=3955+1.58v (Brown and McQueen, 1986).

I Fit to data in Marsh (1980).
9 Calculated assuming K, = pa?.

* Anderson et al. (1968).

" Calculated with K = 4b-1 (Ruoff, 1967).
7 Andrews (1973).
k Assumed the same as a-Fe (Touloukian et al., 1975).

! Touloukian et al. (1975).

™ Calculated from v = aK//pc,.
* v(p) = p;)|n/p]® assumed in all calculations.

° Weast (1979), p. D-187.

? assumed the same as a-Fe in Touloukian et al. (1970).
? Inferred from Keeler (1971).
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entropy and mass density, respectively, between o and S at T, and B. For the

particular case of melting, we assume

B-a
Aefa =0 Ah, — Ac(T, - T,) + P22 (TR 4.32],
1 CP M 1 1 apﬂ

where Ah, is the enthalpy of melting, and Ac, is the effective jump of the
specific heat at constant pressure across the liquid-solid transition at the melting

temperature, T,, and standard pressure, P.

Since both dielectric and metallic solids initially compose our target, we
must consider thermodynamic properties that reflect the influence of both ionic
o estimate the harmonic lattice contribution to these
properties, we use the Debye model (e.g., Alt’shuler et al. 1962; Andrews, 1973).
In particular, Andrews (1973) used this model as part of a parameterization of
the equilibrium thermodynamic properties of a— and e-Fe. Jamieson et al.
(1978), Brown and McQueen (1982, 1986), and Boness et al. (1986), have all
assessed the influence of electronic processes on the material properties of metals
at high pressure and temperature. They assume the conduction electrons con-
tribute to the equilibrium thermodynamic properties of a metal as a Sommerfeld
free-electron gas (e.g., Wallace, 1972, Sect. 24). This is reasonable for T< <T,,
where T, is the Fermi temperature. Since the value of T, for Fe is ~10° K,
assuming T,<<T; is quite reasonable for the calculations presented below. So,
assuming that lattice-electron and band-structure contributions are negligible,
the molar Helmholtz free energy (HFE), F(T,p), of a cubic or isotropic Debye

solid material, subject to an isotropic state of stress, is given by (Wallace, 1972,

Sect. 5)
3 e 1 1 R
F(T,0) = ®(p) + 3uR {§ &+l - €] - 1 ED(ED)} T-20()T [433)

In [4.33], ®(p) represents the zero-temperature lattice contribution to the molar
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HFE,

&= &) = 220 434
is the Debye similarity parameter,

(p) =T(p) - 2A4(p) [4.35],

—%l‘(p)T2 is the low-temperature (T<<T,) electronic contribution to F,

AQ(p)T2 is the high-temperature anharmonic contribution to F, v is the number

of atoms in the chemical formula, and E (£) is the Debye internal-energy func-

tion (e.g., Gopal, 1966), i.e.,

E(f) = % of [ex"j x [4.36).

In this approximation, the Debye temperature 6, is related to a lattice

Gruneisen’s parameter, 7, by (Wallace, 1972)

(42
If we sssume
o) = o2} 438]
then @, is given by
0,(s) = 8,n) exp| ""Zi) {1- {-’;;}%} | 4.39].

For simplicity, we do not separate -, into longitudinal and transverse com-
ponents; in this case, ~ represents a weighted average of these components.
The quantity I'(p) is related to the electronic Gruneisen’s parameter, ~,, through

(e.g., Wallace, 1972)
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_ dinT
Ve = - { dlng } [4.40].

Assuming 7, is constant, we have

I'(p) = F(Pi){ % } i 4.41].

Noting that the high-temperature (T>6,) anharmonic contribution to the free
energy, A2(p)T2, has the same temperature dependence as the electronic contri-
bution to F, we observe that these will have equivalent effects on F. By analogy
with [4.41], we assume, for simplicity, that

w

() = a(o){ 2 [4.42).

For the example calculations involving Fe-targets presented below, we constrain
the values of }(p;) and w empirically. Boness et al. (1986) calculated I'(p) for
the € and ~phases of iron using the Sommerfeld free-electron-gas theory. In
addition, these authors suggest that the electronic density-of-states in liquid
iron at high pressure may be approximated by that of the closed-packed ¢ and
~-phases at high pressure, where the liquid should be ‘““close-packed.” We make

the same assumption.

Relation [4.33] allows us to write expressions for the approximate density-
and temperature-dependence of a number of solid-state properties (Appendix A).
In particular, the equilibrium thermodynamic Gruneisen's parameter, ~, based

on [4.33), is given by

Q
7=7D+(w—7D)Mc T [4.43]
v

(Equation [A.11]). From this, we note that ~ is only weakly temperature-
dependent, since w2~y in the pressure range of interest. Hence, the thermo-

dynamic model based on [4.33] is approximately consistent with the assumption
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above that 7 is a function of density alone, upon which [4.8] above is based.
Consequently, we assume ¥~=,(p), where ~(p) is given by [4.38], the power-law
form (Bassett et al., 1966). In this case, from [4.6] and [4.38], we also have

Tlsuo) = Tlpr) exo] L { {ﬁ}%— { —"i}%} } [4.44]

q P P2

for the change in temperature in the material due to isentropic compression or
expansion from a starting density p; to a second density p, along the isentrope

of the material centered at s;,.

With respect to T, we are particularly interested in the specific heat at

constant volume, c, (T,p), given by

d%f 3R 3& 0
CV(T,p) = _T{-a?g_}p = VT {4ED(§D) - [efD— 1] } + 1\(/f) T, [4'45]

where M is the molecular weight. Substituting this into [4.10], we obtain

P - BT, + 50 (T3 TD = ele)  [a.49
with ,=Q(p,) and
Aefp) = -[Aefe + Dey(p)] + =onlFy + B [4.47),

207
being the difference in specific internal energy between the Hugoniot and princi-
pal isentrope of £ at density p,. Note that Ae,=~0 when T=Ts, Ty<Tg when
Aey<0, and T,>T, when Ae>0. In  [4.46]-[4.47], we use
£=0n/ T, &u=0p/T;; and 8, =6;(p,). Equation [4.46] is an implicit relation
for T,, which we evaluate numerically. Since the majority of our calculations
are at high temperature (T>6,), and the Hugoniot temperature changes much
more drastically with pressure than ©,, we may expand Ej(£,,) into its high-

temperature (§,—0) form:
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Ey(&x—0) ~ femx2{l—l-x+Lx + "'}dx
0

2 12

3
(L
3 1
=1-Z6at w6+ O[&L].

Substituting this into [4.46], we obtain

1 3 3uR 3R —
2QHTH+ N AHT+20M6 0

with A,=A(p,) and

Alp) = Befp) + ZLE(EIT, + 20, + —-0(p)T2

Relation [4.48] has the solution

T, = 2Vp cos{%cos‘l{ L} } _ 2R

pvVp Q,
with
=)+ S
and
E—% { QHAﬂ+—e2+s{—ﬂ%} }

If we set ) equal to zero in [4.46], we have

E,(6ad T0=0) = Ey()T, + o Aea)

[4.48)

[4.49].

[4.50]

[4.51].

which is appropriate for a dielectric material with negligible anharmonic contri-

butions to F. Doing this in in [4.50], we obtain

T(0=0) = 4! {1_*_{1_?{]3%{6 ]} }

6UR MA,

%

}

[4.52]
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with

3R 9vR

S E(6)Ty + O

for a dielectric material at high (T>®©,) temperature with ATI<A,Ti<<1.
Alternatively, if we assume the classic limit for the harmonic contribution to c,

at high temperature, t.e. 3vVR/M, [4.46] reduces to

T (£,,=0) = 35? {{1 + %(%%g-jxg }% - 1} [4.53)

with
A = o) + ZRE(E)T, + 0,12

Finally, if we set both 2 and &, equal to zero in [4.46], we have

Ty(2=0,£4=0) = E( ED,)T + AeV(pH) [4.54].

If we further assume E (£,)=1 in [4.54], we obtain the relation most commonly

used (e.g., Jeanloz and Ahrens, 1980) to calculate T,.

To demonstrate the effect of these different approximations to ¢, on T,, we
plot T, as a function of pressure for Fe shock-compressed from a-Fe to ¢-Fe in
Figure 4.2, using the parameter set for Fe given in Table 4.1. Below, we con-
strain 2 from the intersection of Fe-Hugoniot and melting curve, but for this
comparison we assume A, = 0 and use the results of Boness et al. (1986) for
I'(p) (Table 4.1). On the basis of these results, we may conclude that the elec-
tronic contribution to ¢, of e-Fe dominates its temperature along the Hugoniot
of Fe at high pressure. Also for e-Fe, and perhaps not suprisingly, the
difference between T, calculated with the full Debye relation for ¢, ([4.46]) and
that calculated by assuming the harmonic part of ¢, = 3vR/M ([4.52]) is very
small (about 200 K at 240 GPa). In fact, even for Al,O3, which possesses a
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Figure 4.2. Comparison of the effect of different models for the specific heat at
constant volume, c¢,(T,p), on the temperature of the eFe
Hugoniot states.




-52-

(edn) sanssaad

000c 0

0009 000%

o¥g 081 0cl 09 0
[ | I [ L

3 &

880
5 8

i ; B ]

v m ) yd

v @
m a - \
v
v @ - ~
| v mv_ ~ .
v O -
v O A.v -
v oo - Bune —
v © - . - -

v 0 o * _— SUOJ}O3[a-snuI-}}3d-Buong ©¢
B n_\o —_ suoJjoafa-snid-jjjad-duomng Vv N

o suoJjod[a-snunu-2£qaq

) suoJgjoafa-snid-adqa(q 0O
I ] l .

® ® L J ® ® L

0008

(31) sanjeasduwis],




-53-

a much higher Debye temperature than ¢-Fe (Table 4.1), Hugoniot tempera-
tures calculated with [4.52] are only about 300 K above those calculated with
[4.54] at 200 GPa. Note that the curves in Figure 4.2 converge at low pressure
because T, approaches Tsl “faster”” than the various approximations to ¢, can

affect T,; as P—O0.

From the impedance match and U-v relations of each material, we may
obtain the pressure and density of the first shocked-state of each target com-
ponent. Using this along with an estimate of deiba and the assumed form for ~

above allows us to estimate, using [4.20] and [4.44], the changes in specific inter-

nal energy and temperature along the appropriate isentrope of the high-pressure
phase of each target component. These estimates, along with the model for
¢y (T,p), allow us to calculate T, for any phase as a function of P,. The next

step is to estimate the effect of release on the shock-compressed state (T, P, and

Pr)-

§4.2. Initial Conditions: Release and Reshock States

As discussed above, the targets are constructed so that the DP has a higher
shock impedance, pf'U, than the FL, which in turn has a higher impedance than
the TW. In this case, both the DP and FL are shock-compressed, released and
possibly reshocked. Assuming that a given release state of the DP or FL is in
thermodynamic equilibrium, we may again employ the concept of an equivalent
equilibrium thermodynamic path to connect respective compressed and released
states of each target component. However, since we have no expression for the
change in specific internal energy of the material during release that is indepen-
dent of the details of phase transition (note that [4.1] is such a relation for
shock compression), we cannot utilize the same kind of equilibrium thermo-
dynamic path as that constructed above for shock compression. Instead, we

must assume something about the release process, and any potential phase
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change during release, to construct an equilibrium thermodynamic path between
the compressed and released states. The only constraint we have a prior: is
that the release process takes the shock-compressed material at an interface, via
the release path, to a state with approximately the same normal components of
material velocity and stress as the shock-compressed state of the lower shock-
impedance material on the other side of the interface. Subsequent wave-
reverberations establish the continuity of normal stress and material velocity, as

required for the existence of a material interface.

To proceed further, we assume that heat transport in or out of the target is
insignificant on the time scale of the release process; t.e., this process is adia-
batic (6q=0). Considering each compressed target component as an equilibrium
thermodynamic system, we further assume that any mechanical work by the
system during release is entirely reversible. In the case of a single-phase system,
the release path is then both isentropic and adiabatic. The change in tempera-
ture with density along this path is related to v, as given by [4.6] above. Since
the impedance match provides us with the pressure of the release state, B, we
may calculate the temperature, T,, and density, p,, along an isentropic path
that has not crossed a phase boundary through simultaneous solution of [4.6]

and

T

o(ToP,) = p(ToP,) exp1 - jr’ a[T,o(T,P,)|dT [4.55],
HR

where T, = T(s,;0;) is the temperature, p, = p(T,,P,) the density of the release

state, and p(T,g,Py) is the density along the Hugoniot of the same phase at a

temperature T, and the pressure of the release state, P,. The coeflicient of

thermal expansion, a(T,p), in [4.56] comes from an equilibrium thermodynamic

model for the appropriate phase (Appendix A for solid-state; Svendsen et al.,
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1987, Chapter V, for liquid-state). For example, in the case of solid-state

release, a follows from the equilibrium thermodynamic model for F(T,p), 1.e.,

, { 9%F }
dTo
a= £ pT = 0 [4.56]
{aF} 0 { 62F} K;
2py — + 0\ —
dp )p 8p% )1

(Appendix A), where K. = K|(T,p) is the isothermal bulk modulus, and it is

referenced to the isentrope or Hugoniot as discussed in Appendix A.

To bound the nature of the release process as initiated at an interface, we
focus on the extremes: 1) complete contact { shock-fr
interface, or 2) no contact, in which case each material has a free surface at the
interface. We refer to the former interface as the ‘‘smooth” interface, and to
the latter as the ‘‘rough” interface. To illustrate the different paths these
“end-member”’ interfaces should take, consider the two examples discussed
below and depicted in Figure 4.3. If we shock-compress the DP(FL) to some
point A along its Hugoniot below the Hugoniot-melting curve intersection, it
will release to a state having, after one or two wave reverberations, the normal
stress and material velocity of the shock-compressed FL(TW). If these rever-
berations are isentropic, the resulting temperature will equal that calculated by
direct release to the pressure of the shock-compressed FL(TW). The DP(FL)
material at the smooth interface then releases directly to this state, represented
by point B in the Figure 4.3. However, the surface of the DP(FL) at the rough
interface is partially free; hence, the DP(FL) material at this interface releases
to near-zero pressure. If we assume the release path is isentropic, its slope will
be less steep than that of the melting curve. In this case, the melting curve and
release path will intersect (see point C, Figure 4.3). If the phase transition is
slow relative to the rate of decompression, the DP(FL) material will follow the

ABCG (metastable) path to low pressure (even though this path is not
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Figure 4.3. Possible range of T-P paths taken by DP and FL materials near
the DP-FL and FL-TW interfaces, respectively, during an experi-
ment.
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necessarily isentropic, as discussed below). However, if the transition is uninhi-
bited, the release path will turn along the phase boundary at the intersection
point (point C, Figure 4.3), and the mixed-phase material will decompress along
the boundary until the transition is complete, or the mixture reaches low pres-
sure. Assuming the transition completes above zero pressure at point D in Fig-
ure 4.3, the now liquid DP(FL) leaves the phase boundary and continues to
decompress along DE to zero pressure. As the DP(FL) material closes the inter-
face, it impacts the FL(TW) material and is reshocked and reverberated along a
series of paths, collectively symbolized in Figure 4.3 as the paths lying between
EF and GH, up to the smooth-interface, release-state pressure, which is that of
the shocked FL(TW). Note that the temperature achieved by this set of shock
paths is bounded above by the temperature estimated from a single shock
compression back up to the Hugoniot pressure of the DP(FL); we use this bound
below, along with isentropic release, since it follows directly from the results of
the last section. Because the initial state of the reshocked material is at a
higher temperature than the unshocked material, the reshocked material attains
a higher temperature (ATg higher in Figure 4.3) than the release state of the
DP(FL) material at a smooth interface. If the unshocked DP(FL) material is
shocked to a higher pressure state than A that is still below the melting curve, a
smooth interface may release to a state pinned to the melting curve, or be
above the melting curve, as for release from A in Figure 4.3, in the liquid
state. The rough interface released from A' would follow A' B' C' and be
reshocked along C' D’ to D'. Note that the effect of reshock is much more

pronounced as the initial shocked-state pressure increases, regardless of the

phase transition.

When the release path encounters a phase boundary, such as the melting
boundary shown in Figure 4.4, [4.6] is no longer valid. If we believe the release

path remains isentropic through this region, then we must require that, in
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addition to releasing adiabatically and doing or experiencing only reversible
work, the material also change phase in thermodynamic equilibrium (Appendix
B). Under these conditions, the isentropic two-phase path for a congruent

phase-transition from phase 3 to phase 7 is described by the relation

{(05 + xAc)Av - (Pv? + xA(aw ))T,,B(P)As} dpP

+ As TP) Asdx =0 [4.57],

where P is the pressure along the phase boundary, T (P), x is the mass fraction
of m, ¢, is the specific heat at constant pressure, o is the coefficient of thermal

expansion, v is the specific volume, and

Ap= ¢ -f

is the jump of any quantity ¢ across the phase transition. Since 1) all end-
member quantities in [4.57] may be viewed as functions of pressure and tem-
perature, and 2) temperature and pressure are not independent along the
equilibrium phase boundary, these quantities are actually function only of pres-
sure or temperature along the boundary. In this case, choosing P as indepen-

dent, we may solve [4.57] for x = x(P) (Appendix B) to obtain

X(P) = m fP: u(P*)| To(P)oPvPAs — cfAv |dP*  [4.58]
with
u(P) = exp| [T-L {A(av)— T:(';,) {1 + -‘Z—:*’} }dp [4.59].

In [4.58], B,£ is the pressure at which the release path of 3 intersects the =3

phase boundary, t.e., where x = 0. We may evaluate [4.58] numerically along
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the phase boundary, T,(P), with x(P) increasing above zero, until 1) x =1
(complete transformation) or 2) T, = T.(Pg) (partial transformation). In the
former case, the new phase then releases to P, along a path beginning at the

pressure and temperature on the phase boundary where x = 1.

Relation [4.58] is valid along any isentropic path through a first-order
mixed-phase region of a single-component system, (:.e., solid-solid, liquid-solid),
but now we focus on the solid-liquid phase boundary as discussed above. To
utilize [4.58], we need to estimate solid- and liquid-state properties along the
solid-liquid boundary T,(P). We do this by way of semi-empirical models for
the solid-state (e.g., Andrews, 1973; Appendix A), and the liquid-state (e.g.,

Stevenson, 1980; Svendsen et al., 1987, Chapter V), respectively. For the solid

state, we use a parameterization of the solidus, T\{(p\{), based on Lindemann’s

law:
{ ﬂ } = T [4 60]
dph: Lindemann Pm: ’
where
1
M= 2% - 7) [4.61]

for the solid-two phase boundary (solidus). The quantity ~,% is the solid phonon
Gruneisen’s parameter at the melting point, equal to ~y(pd) in the Debye
approximation we use here. Using [4.61] in [4.60], we may calculate T,/(p\) once
we know the density of the solid along the phase boundary, and the dependence
of M\\{ on the solidus demnsity. For the solid phase, we have already assumed
Yp = (p), With , given by the power-law [4.38] above. Putting [4.38] into
[4.61] and the resulting combination into [4.60], we obtain an expression for the

solidus, i.e.,

2/3

p" 9 Qr qr
Tén) = Tila) {2 exp] 2 (£} - (2] [4.62],
G Pri Pry
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where Py = p(TM‘,Pi) is the density of the solid at the melting temperature at
standard pressure. To use [4.62] to find T,/(p), we need to calculate the change
in density along the solidus with pressure. Noting that, in general, the equilib-
rium thermodynamic properties as developed from [4.33] are functions of tem-
perature and density, we may calculate the variation of any of these properties,

¥(T,p), with temperature at constant pressure from the relation

HTR) = UT.R)+ [ | 2] ar (4.63),

where

o), = 57), -5
-] == -ap|=—= [4.64]
[6T P oT |}, 0p )
where P, and T, are some pressure and temperature at which we know . In
particular, putting ¢¥=p into [4.62], as we did to obtain [4.55] above, we may

anchor the solidus T,/ to the solid Hugoniot of the relevant solid phase by solv-

ing [4.63] (numerically) simultaneously with

T!

o(TudP) = p(T.,Plexp} - jr' My [T,p(T,P)dT [4.65],
H

where pf = p(T\,P) and p(T,,P) is the Hugoniot density of the solid phase at

the same pressure, with a as given above. In Figure 4.4, we compare this calcu-

lation with one in which we assume p(T,},P)=p(T,P). The greatest effect is at

low pressure; this is also where the correction is most uncertain.

For the DP-FL and FL-TW interfaces with no contact, the DP and FL
release to near-zero pressure, and consequently we cannot use the Hugoniot as a

reference state. So instead of [4.55], we solve [4.6] simultaneously with

P(Te,0) = p(T,0)[1 - o(T,,0)(T, - T,)] [4.66],
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Figure 4.4. Comparison of ¢Fe Lindemann solidi calculated from the
compression along Hugoniot (dotted curve) with that estimated
from the compression along the Hugoniot adjusted to the solidus
temperature (dashed curve), as discussed in the text.
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where T, is some reference temperature (e.g., 298 K or T,,), depending on the
relevant phase. With the density of the release state, p,, we may estimate the
free surface velocity of the DP and FL surfaces at the DP-FL and FL-TW inter-
faces, respectively, due to isentropic release, via the Riemann integral method
(e.g., Fowler and Williams, 1970). We assume, as required by the constraint of
isentropic release, that the material velocity is continuous across the phase
boundary (i.e., the same for both phases) when calculating the free surface
velocity. We then take this free surface velocity as the ‘“‘projectile’” velocity of
the DP or FL surface impacting the FL or TW surface, respectively, and use an
impedance match to calculate the pressure and density of the reshocked state.
To calculate the temperature of the reshock state, we use the appropriate form
of [4.46], but referenced to the temperature and density of the complete release

state rather than to T; and p® (Appendix B).

§4.3. Initial Conditions: Application to Fe Targets

To exemplify these considerations, we calculate release and reshock states
for Fe-Fe-Al,O3 and Fe-Fe-LiF targets, as shown in Figures 4.5a-b. The solid
and liquid Hugoniot states result from [4.46] and [4.52] (with A;=0 and £_=0),
respectively, as based on the parameter set given in Table 4.1. Solid-state pro-
perties along the release path and melting curve are referenced to the e-
Hugoniot via [4.6], [4.46] and [4.52], while the analogous liquid-state properties
are referenced to the experimentally constrained Fe melting curve of Williams
and Jeanloz (1986) via a liquid-state model for Fe (Svendsen et al, 1987,
Chapter V). The Fe melting-curve data of Williams and Jeanloz (1986), which
extend to 100 GPa, are fit to a Lindemann parameterization, referenced to the
e-Fe Hugoniot (metastably above 245 GPa) using [4.62] and [4.65] (Svendsen et
al., 1987, Chapter V), and then extrapolated to 330 GPa. In calculating these

release paths, we ignore all other solid phases of Fe, save e-Fe, which is the



Figure 4.5a.
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Release/reshock calculations for Fe film/foil-Al,O5 interfaces and
initial greybody temperatures inferred from Fe-Fe film /foil-Al,O4
radiation data of Bass et al. (1987). ‘“Release conduction” and
“reshock-conduction” symbols represent initial effect of thermal
inertia mismatch across the Fe film/foil-Al,O; interface on the
indicated states.
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Figure 4.5b. Release/reshock calculations for Fe film/foil-LiF interfaces and
initial greybody temperatures from Fe-Fe film/foil-LiF radiation
data. The larger shock-impedance mismatch between Fe and
LiF results in a lower release-state pressure at Fe-LiF interfaces
than at Fe-Al,O3 interfaces, when both release from the same
Hugoniot pressure.
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stable solid phase of Fe along its Hugoniot between 13 (Barker and Hollenback,
1974) and ~ 200 GPa, where the sound-speed measurements of Brown and
McQueen (1982, 1986) along the Fe Hugoniot suggest that e-Fe transforms to
~Fe (?) or possibly a new solid phase (f: Boehler, 1986). Consequently, +Fe
and/or another solid-phase is in equilibrium with liquid-Fe above about 5 GPa
to perhaps 280 GPa (e.g., Anderson, 1986). In this case, we neglect any effects
of an e—~y or €—0@ trapsition in referencing compression along the Fe-melting
curve to the e-Fe Hugoniot. As stated above, in calculating the e-Fe Hugoniot
states shown in Figures 4.5a-b, we have constrained 2(p,), with w = 1.34, which
is the value of ~, for e-Fe given by Boness et al. (1986), by requiring the
parameterized Fe-melting curve and e-Hugoniot to intersect at 245 GPa. On
the basis of the parameter set given in Table 4.1, this fit constrains Q(p,) to be
0.046 J/kg'K?. Boness et al. (1986) calculated a value of 0.090 J/kg'K? for I'(p,)
(adjusted to STP density for e-Fe given in Table 4.1). If we set Q(p) = 0.090,
the e-Hugoniot based on the parameter set in Table 4.1 intersects the melting
curve at =~ 280 GPa. We note that Boness et al. (1986) constrained I'(p,)=0.09
J/kg'K? and ~,=1.27 for +Fe, while Bukowinski (1977) constrained I'(p,)=0.08
and J/kg'K? and ~,=1.5 for this phase. With these values for I'(p,), the value
of Q(p;) constrained above for e-Fe implies some competition between anhar-

monic and electronic contributions to the specific heat of ¢-Fe at high pressure.

Brown and McQueen (1986) fit a linear U-v relation to the available Fe-
Hugoniot data between 13 and 400 GPa. Since their sound-speed measurements
also suggest that Fe melts along the Hugoniot above about 245 GPa, their U-v
relation should describe the liquid-solid mixture and pure liquid phase, as well
as the solid. On this basis, we use their U-v relation to calculate both the e-Fe
Hugoniot and a metastable liquid-Fe Hugoniot referenced to the extrapolated
density of liquid-Fe at STP (Table 4.1). With this U-v relation, [4.53] above for
Ty (A2=0 and §,=0) and T as constrained by Boness et al. (1986), we
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calculate the metastable Hugoniot of liquid Fe. Using Aef-* = 0.14 MJ/kg for
Fe (as compared to the enthalpy of melting at standard pressure, 0.25 MJ/kg,
from Desai, 1986), the metastable liquid Fe Hugoniot intersects the melting
curve at about 305 GPa. This agrees reasonably well with the results of of
Young and Grover (1984), who also ignored all other phases of Fe, save ¢ and
liquid, in their parameterization of the Fe melting curve. We combine this
metastable Hugoniot along with the e-Fe Hugoniot in an ideal mix (e.g., Watt
and Ahrens, 1984) to construct the shock-compressed, mixed-phase region shown

in Figures 4.5a-b.

22103 < L&IL UL 2 5 ¥ &V

For comparison with the caleulations, we have plotted the initial interface
temperature results from the Fe film/foil experiments of Bass et al. (1987) in
Figures 4.5a-b. Note that the Fe-Al,O; interface data shown in Figure 4.5a run
almost parallel to the reshock locus, thereby exemplifying the strong pressure
dependence of the reshock process (Urtiew and Grover, 1974). Comparing the
data with the smooth-interface release states, shown as squares in Figure 4.5a,
implies that Fe at both film-Al,O3 and foil-Al,0; interfaces experiences up to ~
2500 K of reshock heating between 190 and 230 GPa. As stated above, we
naively expected that the film-TW interface would experience consistently less
reshocking than the foil-TW interface. The present results contradict this
expectation. There appears to be no guarantee that film interfaces will con-
sistently experience any less reshock than the foil interfaces, especially at high
pressure. In this case, a well-polished foil surface may actually experience less

reshock than a slightly porous film interface.

Figure 4.5b displays the results of the calculation for Fe-LiF interfaces.
Because of the larger impedance mismatch between Fe and LiF, the Fe-LiF
interface reaches a lower release-state pressure than the Fe-Al,O, interface when
both release from the same Hugoniot pressure. The data and calculation imply

that lower release-state pressure results in less extreme reshocking. Note that
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the Fe-LiF and low-pressure Fe-Al,O; data fall right on the corresponding
smooth-release locus. The points labeled ‘‘release conduction’” and ‘‘reshock
conduction”’ refer to the effect of the contrast or mismatch in ‘“thermal inertia”
across the Fe-TW interface on the release and reshock temperatures, and as dis-

cussed in the following section.

§5. Conductive Transport in the Target

We assume that the temperature profile created by shock compression,
release and/or reshock is established on a time scale short enough to represent
the initial conditions for energy transport in the target. Urtiew and Grover
(1974) considered the problem of energy transfer at material interfaces and
demonstrated that a rough (>1 pm) interface experiences a higher degree of
shock heating than a smooth (<1 pm) interface, much like a porous material
experiences relative to its crystalline counterpart. Since the TW surface at the
interface is much less rough (<10® m) than the DP surface at the interface, it
should experience little, if any, direct reshock heating. However, the DP and
FL surfaces at the DP-FL interface, as well as the FL surface at the FL-TW

interface, may experience significant reshock heating, as discussed above.

Following Grover and Urtiew (1974), we assume that 1) energy transport is
parallel to the direction of shock propagation (i.e., one-dimensional), 2) both
temperature and heat flux are continuous across each interface in the target,
and 3) there are no sources or sinks of energy in any layer or at the interfaces
between them. Under these conditions, we may solve the one-dimensional con-
duction relation:

OT _ | 8T

[5.1]

(e.g., Carslaw and Jaeger, 1959) for the temperature profile, T=T(x,t), in each
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target component as a function of position along the direction of shock propaga-
tion, x, and time, t. The time t=0 corresponds to coincidence of the shock
front and FL-TW interface. In [5.1], p is the density, c, is the specific heat at
constant pressure, and k is the thermal conductivity. Since the temperature
profile in the FL, and particularly the temporal variations of temperature at the
FL-TW interface, control the intensity of thermal radiation sources at the FL-

TW interface, we emphasize these in what follows.

We expect a layer of the DP material at the DP-FL interface and a layer of
the FL material at the FL-TW interface to experience some degree of reshock-
ing. Also, the rough FL surface at the DP-FL interface should compress into a
thin layer with a much higher temperature than the shock-compressed solid FL
material. With this structure, the initial (t=0) temperature profile of the DP-
FL-TW system is of the form

T, -0 <x<—(d+6p)
TA+AT, —(d+6&)<x<-d
TA+ATy -d<x<—(d—6:)

TEO) =) T _(d-6.)<x <60 [5.2]
T+ ATnw  —6w<x<0
Ty 0<x<©

(Figure 5.1). Here, d is the FL thickness, and T, and T, are the temperatures
achieved in DP and FL, respectively, by direct release to the pressure of the
shock-compressed TW, which has a temperature T,. Also, T,+AT, is the tem-
perature of the reshocked layer with thickness §, in the DP at the DP-FL inter-
face, while T,+AT,,, is the temperature of the reshocked layer with thickness
Oqw in the FL at the FL-TW interface. If the surface of the FL at the DP-FL
interface is also rough on some scale, it will compress like a porous material.
Consequently, we assume that a layer with a thickness &, and temperature

T+ATg, forms in the FL at the DP-FL interface. Since the surface of the TW
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Figure 5.1. Initial conditions for thermal conduction in target. T, and T,
represent temperatures achieved in the DP and FL, respectively,
upon direct release to a state with the pressure of the shock-
compressed TW, having a temperature T,. Variable degrees of
reshocking are shown for DP (AT,) and FL (ATy,) at the DP-FL
interface, and for FL (AT,,) at the FL-TW interface; these
involve some thickness (&, &5, and &) of each target component
adjacent to the interface.
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is much smoother than the DP or FL surfaces, we assume that there is no
reshock heating of the TW material at the FL-TW interface. Note that the DP
and TW are idealized as thermal half-spaces, a consequence of our assumption
about the rates of shock compression and release relative to conduction. Again,
we emphasize that all material properties of each target component are assumed
homogeneous, time-independent, and are referenced to their respective states at

the pressure of the FL-TW interface.

The governing relation [5.1] for each layer, combined with the boundary

conditions of continuity of heat flux and temperature, and the initial conditions

) L initial_h d
“~ €Cliy ail ifiivial-ooundaary vaiu 7 i

~—
3
o+
-

[~ 2%
y Op

—

=4
Je

g——

€ = x/d and 7= t/t,,. We are particularly interested in this profile for the
FL layer, and the temporal variation of T(0,7), for the FL, which represents the
FL-TW interface temperature. Solving this initial-boundary value problem in
Appendix D, we obtain expressions for T(£,7), Tg(é,7), and T(&,7). In particu-
lar, we have, for T,(§,7), -1<£<0, 7>0, the expression

T(&7) = Te + A(§,7)AT, + B(§7) [Tp - T

+ C(&,7)ATy, + D(€,1)A Ty, + E(&,7)[Tw — T [5.3]
with
AE) = ey 3 o)

erfe{[(2m+1)+&Jw.} — erfe{[(2m+1)+E+rp00 Jwi }

P———

- uw{erfc{[(2m+1)-§]wp} - erfc{[(2m+1)—§+nm5;]wF}}

B(&7) = HEZT) mﬁ:;o (Verie)™ {erfc{[(2m+1)+£]wF} - vygerfe([2m+1)-Eluy} |
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; yTi—1, : < : _<__ 617:)
Clen) = {g(ET L&) + g7 (6mé-146n) € < -1+

g (&m-1,-1+6,) £€2 -1+ 65
B B(Em-600) €< -5k
VD(E’T) - {g;(f,r;—ép‘&wE) + & (§713€,0) € > —bew
and
E(¢r) = (1%\;5- méo (VP )™ {erfc{[2m—§]wF} ~ yerfe{[2(m+1)+¢]w, } .

The functions gZ(€,7;a,b) are defined in Appendix D (Equation [D.40]). In these
expressions, K, = Vk./k, is the square root of the ratio of the FL thermal
diffusivity to the DP thermal diffusivity, with & = k/pc,, € = x/d is the nondi-
mensional distance, d is the thickness of the FL, w, = VPe, /47, 7= t/texp IS

the nondimensional time scale, Pe, = d2/fc,,.texp is the Peclét number, t.,, is the

exp

time scale of experiment, and §*= §;/d, where i=DP, FL or TW. Also, we

have

O = { l;:z::: }V2 [5.4]
and

Oum = {-li-;‘”-’,’;“%ﬁ}’é 5.5),

which are the thermal inertia ‘‘mismatches” (Carslaw and Jaeger, 1959, p. 321)
between DP and FL, and TW and FL, at the pressure of the FL-TW interface.

Also, we have

_ (Uwr-* - 1)
Vo = m [5.6]
and
Vg = -(-03;2 [5.7].

(O + 1)
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In [5.4] and [5.5], k, p and c, are the thermal conductivity, density and specific
heat at constant pressure, respectively, of the designated material for the state
of each material at the pressure of shock-compressed TW. To estimate the
values of o, and o, at high pressure, we need the appropriate values of k, p
and c,. Density follows from the impedance match and release calculations,
while the specific heat at constant pressure results from the classical thermo-
dynamic models discussed above. Assuming that the thermal conductivity, k,
may be written in terms of lattice, kp, and electronic, k., components, i.e.
k = k, + k., we assume that k=k, for metallic target components. In this
case, we calculate k, and k; as a function of temperature from the Wiedemann-
Franz-Lorenz (WFL) relation

p—fllfi = 245X 1078 W-0/K? [5.8)
(e.g., Berman, 1976), where p, is the electrical resistivity, to estimate k, from
electrical resistance data on shocked metals, respectively. Assuming the thermal
conductivity of the TW material is controlled by lattice processes, we may use
the thermal conductivity model of Roufosse and Klemens (1974) to estimate k.
As compared to k, or k, k, predicted from this model increases much more
slowly with pressure, partially accounting for the development of a significant
thermal inertia mismatch across the FL-TW target interface. Based on the
release/reshock calculations presented above, we calculate o, for the Fe-Al,05
and Fe-LiF interfaces using the value of electrical conductivity for e-Fe given in
Table 4.1. This value comes from Keeler (1971), who summarized electrical
conductivity data on e-Fe between 20 and 140 GPa, and it represents an extra-
polation of the trend in the e-Fe data down to standard pressure. We list
results of this calculation in Table 5.1. As evident, Fe is more closely matched
to Al,O3 than LiF; since Ty {7) is proportional to oy./(140,,) (see [5.9]), there is

a greater adjustment of T, (7) at the Fe-Al,O5 interface, as is shown below.
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Table 5.1. STP and High-Pressure Thermal-Inertia Mismatch Estimates.

STP 100 GPa 200 GPa

Ideal interface

Fe-Al,Og 0.56 0.25 0.15
Fe-LiF 0.20 0.11 0.05

Reshocked interface

Fe-Al,O, 0.56 0.15 0.07
Fe-LiF 0.20 0.08 0.01
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We now focus on the FL-TW interface temperature,
Toe(7) = T4(0,7) = T\(0,7), since it is responsible for controlling the interface
source radiation intensity. Specializing the relation for Tp{7) to the case where
the DP and FL are the same material (e.g., Fe), we have T, = T,; we also
assume AT, = AT, for simplicity. In this context, the same equilibrium ther-

modynamic state exists on either side of the DP-FL interface, and T,{(7) is

given by
Toel7) = Ty + G(DAT, + D(1)AT,n, + %T(Tw -T,) 5.9]
with
1 * *
G(r) = -(1+Twr)[ erfe{(1-6m)we} — erfc{(1+67 Jwe} ]
and

D(7) =

m erf{ (SF:AWF} .

Noting that the complementary error function, erfc(x), decreases with increasing
X, and erf(x) increases with increasing x, we see that D(7) will decay with time,
while G(7) can either grow or decay. Most radiation observations constrain a
decreasing temperature with time (see discussion below); however, there may be
some suggestion of the influence of AT, on T, (7) in the data on the Fe-LiF

interfaces discussed below.

If we assume AT, = 0 = AT,, and/or 65 = 0 = &, [5.9] reduces to

Tor) = T, + D()AT, + ﬁ—:—_”—"a’:)-('rw - T,) 5.10},

which is the reshock model considered by Grover and Urtiew (1974). Further, if
we let 6my—0, we have, from [5.10],

Tpd?) = Ty = T, + mﬁ;(l‘w - T,) [5.11]



-79 -

relating the temperature of the smooth FL-TW interface, T,, to the tempera-
ture of the direct-release state, T,. Note that T, approaches T as o,,—0, and
Ty as oy—00. Also, note that that T, (7), as given by [5.11], will be time-
dependent only if the FL-TW interface is reshocked. We use [5.10] with the
reshock-state temperature in the FL at the FL-TW interface (T,+ATg,), the
shock-compressed temperature of the TW (T,,), 0 and o, to calculate T, (0),
which is labeled ‘‘reshock conduction” in Figures 4.4a-b. Similarly, we use
[5.12] to calculate the “release conduction” temperatures from T, T,, and 0.
As stated above, the Fe-LiF thermal mismatch is greater (i.e., o, is much
smaller: see Table 5.1) than that of the Fe-Al,O, interface, mainly because LiF
is more compressible and less conductive (thermally: see Table 4.1) than Al,O,.
In this case, the Fe-LiF interface temperature remains closer to the temperature
of Fe at the interface than does the Fe-Al,O; interface temperature. Further,
the greater compressibility of LiF gives it a much higher shock-compressed tem-
perature than Al,O;. For example, T, for LiF (from [4.52])) at 160 GPa is =~
4200 K (ignoring the possibility of melting), while T, for Al,O3 (also from [4.52])
at 230 GPa is = 2750 K. The temperature mismatch is much less across the
Fe-LiF interface, and the effect of thermal inertia mismatech on T, is less

extreme.

In Figures 5.2, 5.3, 5.4 and 5.5, we present calculations for Ty({,7) and
Tu(&,7) from [5.3] and [D.25], respectively, and the associated Ty (1) = T.(0,7),
with AT, = AT, etc., as assumed to write [5.9], for Fe-Fe-TW targets. To
construct these figures, we calculate the compressed/released and
reshocked/released states achieved in an Fe-Fe-Al,O; target impacted by a Ta
projectile at a velocity of 5.67 km/s; we assume the calculated reshock tempera-
tures at the DP-FL and FL-TW interfaces are the initial values. This impact
velocity is that of one of the experiments (Fe-Fe film-Al,O3) discussed below.

The basic result here is the dependence of the rate of change of T, () on Pe,
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Figure 5.2. Variation of the temperature near a reshocked Fe film/foil-Al,0O4
interface. Part (a) displays the variation of temperature in the
FL, TJ(&7), and SW, T,(§,7), as a function of nondimensional
(ND) position, &, with respect to the FL-TW interface (£é=x/d=0)
at four different times during a 300 ns experiment. The nondi-
mensional range of -1 to 1 corresponds to -d to d, where d is the
thickness of the FL layer. ‘“Reshocked layer” refers to the nondi-
mensional thickness of the reshocked layer, &, Part (b) depicts
the corresponding variation of the interface temperature, Tp{t).
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Figure 5.3. Variation of temperature near a reshocked Fe film/foil-Al,O4
interface. The reshocked layer depicted in part (a) is thicker than
that of Figure 5.2a, and relative to the conduction length scale (as
represented by the Peclét number), causing the temperature of the
reshocked layer, and so that of the FL-SW interface, to decay
more slowly. In part (b), the “t=0" curve corresponds to Ty {0),
while that labeled ‘“‘t=infinity” corresponds to Ty {c0). The mag-
nitude of these asymptotic values of T, (t) is governed by that of
the FL-SW thermal-interia mismatch, o,.
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Figure 5.4. Variation of temperature near a reshocked Fe film/foil-Al,O,4
interface. In this figure and Figure 5.5, we hold the reshocked
layer thickness constant and vary the Peclét number, or conduc-
tion length scale, /kgte,p, of the FL. Since the Peclét number is
inversely proportional to the conduction length scale, a relatively
small Peclét number (0.1) results in a fast decay of T, (t), as
shown in part (b).
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Figure 5.5. Variation of temperature near a reshocked Fe film/foil-Al,04
interface. With a Peclét number of 10, the conduction length
scale of the FL is small relative to the thickness of the FL, and
the interface temperature decays very little over the time scale of
the experiment.
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and 65~ From [5.9], the change in T, {7) with time is given by

{ dTon(7) } = G(r)AT, + D(1)AT,, - [5.12]
dr
with
a2 Pe, |/ oy 116 a2 oy (18 5)wl?
and
=2 Pe, \ /2 _, LI
plr) = (1+‘7w){47r73} e ‘

For the particular case we have plotted, and as noted above, unless
6w=1, 65 >1, and/or AT, >>AT,, , the AT, term dominates T (7). Since
D’(‘r), the coefficient of the dominating term, is always negative, the rate of
change of T, (7) will be negative, and Ty, (7) will consequently decrease with
time. Further, when the D(7) term in [5.12] is dominant, dT,,/dr is propor-
tional to —pexp(-u?), with u = bV Pe [4T = bpy /2Vkt. In other words, over
the time scale of the experiment, t=texps 4 represents the ratio of the layer
thickness to the conductive length scale, \/m. Note that uexp(—uQ) achieves
a maximum value near y~1 and is much smaller (~0) for u much greater or
less than unity. In Figures 5.2 and 5.3, we hold Pe, constant (i.e., the conduc-
tive length scale, \/nFt_m,) and vary the layer thickness, én,. As shown in Figure
5.2, with Pe,=1, Ty (7) for a thin reshocked layer (6m==0.1) relaxes very quickly
(i.e., faster than can be resolved experimentally) to near T, {o0), while in Fig-
ure 5.3, we see that a thicker reshocked layer (8my=0.5) will relax much more
slowly, and on a resolvable time scale. A similar set of events holds if we fix the
layer thickness and vary the conductive length scale of the FL, as we show in

Figures 5.3a-b. For a conductive length scale large compared to the reshocked-

layer thickness (Figure 5.4, Pe,=0.1 and §n=0.5), T (7) relaxes relatively
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quickly, whereas if the conductive length scale is small relative to the layer
thickness (Figure 5.5, Pe,=10 and 6a,~0.5), there is little or no resolvable
relaxation of Ty {(7) away from T, (0). Obviously, & and \/n,,t_exp trade off in
their effects on T, {7), introducing some ambiguity; only their ratio has a dis-
tinct effect on T, (7). In any event, for Pe,~1 and intermediate (6n,~0.3-0.7)
reshock-layer thicknesses, Tp{t) is time-dependent on an experimentally resolv-
able time scale, and its variation with time produces a corresponding radiation

source time dependence, as we show in the next section.

§6. Radiative Transport in the Target

With a model of the initial temperature profile of the target components
and interfaces, we now establish a connection between the radiation intensity of
sources at these temperatures and the radiation intensity emerging from the free
surface of the TW during the experiment. The target is represented as a series
of plane-parallel layers (Figure 2.2) with Fresnel boundaries (Boslough, 1985;
Appendix E). We assume that: 1) source radiation is collimated by the target
geometry; 2) all radiation sources are thermal, and so their intensity is given by
the Planck function; 3) sources are located only at the FL-SW and/or uniformly
throughout the SW, particularly along the direction of shock propagation; and
4) all optical properties are independent of wavelength. The model spectral
intensity of radiation emerging from the free surface of the USW (unshocked
window), I, 04 = Lmea(Xst), as a function of wavelength, \, and time after the

shock-front has passed the FL-SW interface, t, is given by

Limod(Mt) = &at) LA Tw) + Gpnlt) Ia[X Toelt)] - [6.1].
The Hugoniot temperature of the SW, T,,, is homogeneous, uniform, and con-

stant since we assume a uniform distribution of SW sources. The interface tem-

perature, T,,, is a function of time, or constant, in the context of the
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conduction model discussed above. The “\” subscript denotes a spectral quan-

tity. In [6.1], we identify

onl(t) = Wi(t) [1 - nsw(t)] [1 + Il t)] [6-2]

and _
Eaedt) = Vi (t) Bault) [1 - el 6.3]
as the effective normal spectral emissivities of the SW and FL-SW interface,
respectively. As evident from [6.1), ¢, and &, are the properties connecting

the intensities of the sources within the target and the intensity emerging from

the target. The function ¥,(t) is defined by

W\(t) = [1 - rgg] Heswlt) [1 - 1l [6.4]
and represents the effect on source radiation of propagation through the FS,

USW, and SF. In Equations [6.2]-[6.4], Iy, Ig and ryy, are the effective normal

spectral reflectivities of the F'S, SF, and FL-SW interface, respectively. Further,
Tl t) = &7 >0sw (1= t/t0) [6.5]

and
Rewlt) = &5 ¥/t [6.6]

are the effective normal spectral transmissivities of SW and USW layers, respec-
tively. The quantities ay,g, and a3, are nondimensional forms of the effective
normal spectral absorption coefficients in the USW and SW, respectively, and

they are given by
Bsw = Bxsw(¥rs — Viexp) [6.7]
and
Byew = Byusw Xes [6.8],

respectively, where a,q, and a,, are the dimensional counterparts of a,’,, and
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axuew » Tespectively. Also, x. is the thickness of the TW, and so the position of
the F'S with respect to the FL-TW interface (Figure 2.2). Note that ay,, and
ayww mediate the explicit time dependence of &, and &, In writing [6.7] and
[6.8], we have also assumed steady shock propagation such that the position of

the shock front in the TW (Figure 2.2) may be written xg(t) = (U-v)t.

From Equations [6.7] and [6.8], ay, and ay', will be of order unity when

Bxsw ™~ (s Vlexp) ' 1 Brmw ~ X3! [6-9],
which are both ~10%m™, since the thickness of the TW is generally ~103m.
So for values of ayg, and/or a,, much larger or smaller than these ”geometric”
values, source radiation intensity is resolvable or not affected by propagation
through the SW and USW, respectively. The USW is usually transparent, so
ayew~0; if the SW is transparent as well, then ay,,~0 and, from [6.2] and [6.3],

we have

ban(t) < Gar0) = (1)1 -Thg)(1-Taper) [6.10]
and &g, = 0. In this case, I, 4 is governed entirely by sources at the FL-SW
interface, and any time dependence of the observed radiation history is due
solely to Ty, Note that the bound on &, in [6.10] is also the initial value of
&avr (1.€., it can only decrease with time). However, if the TW becomes opaque
upon shock compression, we have a,g,—0co. Again, with a, ,~0, we have

énrr—0 and

bsw(t) < (1-Tps)(1-1) [6.11].
In this case, observable sources are confined to the shock front (this is the ‘“‘ideal
case” of Boslough, 1985). The impact of these and other model parameters on
Lmoa(X,t) is more explicitly depicted by writing the partial derivatives of

Limoda(A,t) with respect to A\ and t. From Equations [6.1], [6.2], and [6.3], these

are
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>‘{ —813;“ } = P(tsw)trswlt Tl Tw) + Pttpen)erar{ 6N Toer(t)] = 5Ly moa(,1)[6.12]
t

and

4 { [0 2 Mo ) = Bl Tyt 35

. dInTy

+ Pl e ol Tl t) { L2} 6.13]
with

__ ¢
P = ——
and
G C,
bsw =

3, 0 T N,
Relation [6.12] exemplifies the fact that the wavelength dependence of I,_, is
due solely to that of the Planck function, since we have assumed that the opti-
cal properties are independent of wavelength. We make this assumption
because its not clear at this point that existing data can resolve wavelength-
dependent optical properties (e.g., Svendsen and Ahrens, 1987, Chapter II).
Again, for most TW'’s, we have a,,~0. If, in addition, T (t) is approxi-
mately constant with time, which may occur in a thick (Pe,>>1) or thin
(Pe,<<1) FL with a thick (6m~d) or thin (&4,<<d) reshocked layer of FL

material, or at the smooth interface, as discussed above, [6.13] reduces to

top gt} — { 1 2L T) ~ Sl h Tt e (6141
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This will be positive if

[(1-rper) 20PN Tw) > Eperdl™s Tl t)] [6.15],
but otherwise negative, since ayg, is always positive. Consequently, with a
finite value of ay;, and a time-independent interface temperature, I,__, will
grow or decay with time on the basis of the sign of [6.15]. If the TW is initially
transparent and remains relatively transparent upon shock-compression, we

have ayi, ~0 and ayg, ~0. Putting these into [6.13], we have

[5) N dinT,,
(ot} = Plesantolh Tontt)]{ 222} 619
and any variation of I,;,q With time should reflect that of Ty, through the
Planck function. In particular, I, 4 will increase or decrease as T, increases or

decreases at a given wavelength.

§7. Models and Data

We compare models and data in the context of the standard x? statistic

(e.g., Bevington, 1969; Press et al., 1986). In our case, it given by

Ny, N, 2
@)= 3 5 2 { LgOut) - Beiotin) | 7.1
i=1 j=1 l.l
In this relation, I,.,(\t) Limea(Mitiia)s 0 = o()\t;) are the experimental and
model spectral radiances and the experimental uncertainties, all at a particular
wavelength, X\;, and time, t;. Also, N, and N; are the number of wavelengths
and times sampled, respectively, in the experiment. The five-component *vec-

tor’” a is the model parameter vector, with components a,, in our case given by

= {Ne » aw » Tow s Novr s Loedt) } [7.2].
Since the radiation model is nonlinear with respect to a2, , aa,, Ty and

Tp(t), [7-1] is not strictly a maximum likelihood measure, even if the data
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errors are normally distributed. However, if the best-fit values of the a, (i.e.,
(min)) have uncertainties sufficiently small such that the value of I, can be
well approximated by the first two terms of its Taylor series representation
about I ;04(\st;8k(min))» X*(a) Will be very close to the maximum likelihood esti-

mate (Press et al., 1986).

We note that r,;5 and a5, are not included in [7.1], since they may be cal-
culated or determined from index-of-refraction and absorption data for the TW.
From the conduction model, we have explicit expressions (e.g., [5.9]) for the
time dependence of T, which allow us, in principle, to constrain Oups €LC.,
given fitted values of Ty, Similarly, the fitted reflectivities allow us to con-
strain changes in the indices of refraction across boundaries (e.g., the shock
front). Note that, in general, the optical properties constrained from [7.1] can-
not be A-dependent unless we give them, a priori, an explicit \-dependence,
with constants whose values are chosen by the fit (i.e., by the data). Since we
have no reasonable expectation for this A-dependence, we cannot truly constrain
it. It is for this reason, plus the limited resolving power of the data itself
(Boslough, 1984; Svendsen and Ahrens, 1987, Chapter II), that we assume
Bysw » Byewr €lC., are independent of X in the previous section. However, we may
determine an apparent A-dependence of the optical properties if we specialize

[7.1] and fit at each wavelength over time, i.e.,

N 2
1
xX*(Na) = Y pary { Liexp(Mirty) = Limoa(Nistj52) } [7.3].
Svendsen and Ahrens (1987, Chapter II) constrained 8y (mip) 10 this manner for
radiation data from Ta-Ag-MgO targets. We use a very simple version of this
approach below with the data of Bass et al. (1987) to constrain a,, . First,

however, it is instructive to consider fits to data using simpler models than that

represented by [7.1] and [7.3]. Most earlier workers (e.g., Kormer, 1968; Urtiew,
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1974; Lyzenga, 1980; Lyzenga et al., 1983) constrained model parameters via the
greybody relation

Itb(k’egb’Tgb) = egb IH(X’Tgb) {7'4]
The associated x? statistic is given by

2

Xt (43850, Tgp) = ig:t‘l UL]?{ Liexp(Mist) = Igb(xi’t‘j;ggb’Tgb)} [7.5]
Since the summation in [7.5] averages &, over all observed wavelengths, it
represents a wavelength-averaged (i.e., total) effective emissivity. Given that
the only A-dependence in the greybody model is contained in the Planck func-
tion, Iy(X\,T), the more closely the data follow the blackbody wavelength distri-
bution at a given temperature, the better the fit (i.e., the lower the value of
Xgi2(t;))- Since both the data and model depend explicitly on ), the fit proceeds

over all observed wavelengths at a given time during the radiation history. As

a result, &, and T,, are functions of time.

Since I, depends nonlinearly on Tgp, we must find the best fit values of €gb
and I, iteratively with the minimization constraints on Xge- To obtain starting
values of &, and T,, for the nonlinear fit, and for comparison, we may use
Wien’s approximation to I,(\,T) in xg&(t;), which follows from I,(\,T) in the
limit exp(Co/AT)>>1, i.e.,

. ) . 2C1 ot
Iwgb(>‘7ewgb7ngb) = Cwgb IW'I(X’ngb) = €ygb _)\'5_ € 2/XTwgb [7‘6]
The relative error incurred in approximating I, by I, is equal to exp(—C,/\T);
this approximation is accurate to within 1% for A\T<3X 103 mK (Siegel and
Howell, 1981). Since we can fit Wien’s relation to the data in a linear least-
squares sense, we can solve for é,, and T,,, directly (i.e., without iteration).

With these values, we may safely apply an iterative technique to [7.5] to con-

strain &, and T,, and to be assured of a nondivergent fit. We use the Golden
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Search (GS) and Levenberg-Marquardt (LM) iterative techniques (Press et al.,
1986) to obtain three different fits: 1) GS with &, variable, 2) GS with &,=1,
and 3) LM with &, variable.

We present a greybody fit to the radiation observations from two experi-
ments of Bass et al. (1987) in Figures 7.1 and 7.2. Figure 7.1 displays a fit to
data from an experiment on an Fe-Fe film-Al,O5 target impacted by a Ta pro-
jectile traveling at 5.67 km/s. The trend in xg2(t) suggests that the fit gets
better with time. Strictly speaking, x2~v+2Vv as v—o0, where v is the
number of degrees of freedom in the fit (i.e., the number of data minus the
number of parameters; 2 in this case); we might hope that Xsb2~2 represents a
reasonable fit for the greybody model. All of the fits show T, (t) decreasing
with time, and for the variable emissivity fits, €gv(t) increases slightly with time.
This behavior is characteristic of most Fe-Fe-Al,05 experiments of Bass et al.
(1987). For all the Fe experiments, we note that Ty, << Tp{t), and that &,(t) is
inconsistent with a,g, —o00 (Boslough, 1985). In this case, from [6.1] have

Limoa(Mst) & &aer(t)le[A, Toe1)] [7.7]
and the decrease of T,,(t) with time (Figure 7.1d) can be explained in terms of
Tenlt), as detailed above. Also, the slight increase of &,(t) with time (Figure
7.1c) can be explained most simply by a slight decrease of the Al,O5 absorption
coefficient upon shock compression. This may be consistent with the observa-
tion that the refractive index of Al,O; seems to decrease with pressure
(~-0.001/GPa between 0.1 and 1 GPa: Davis and Vedam, 1967). Since

ausw~0 for Al,Oj, this observation implies that a,, ~0 as well. In this case,
[7.7] implies that

Kimod(Mst) 2 & OVl [N, To(t)] = (1-Typ)(1Tge) 1-Taaer) [N Tot)] (78]

for the Fe-Fe-Al,O5 experiments.



- 97 -

Figure 7.1. Observed radiation history and x? statistic of greybody model
(8g5:T,y) to radiation data from Fe-Fe film-Al,O, target impacted
by a tantalum projectile at 5.67 km/s, resulting in an Fe Hugoniot
pressure of 244 GPa and an Al,0; Hugoniot pressure of 190 GPa,
which is also the Fe-Al,O; interface pressure (Bass et al., 1987).
Part a) of this figure displays the radiation intensity (spectral radi-
ance) data, collected at four wavelengths: 450, 600, 750 and 900
nm. Part b) displays the ‘“‘goodness” of the greybody fit, as indi-
cated by Chi2=x?, part ¢) displays the best fit normal greybody
effective emissivity, &,(t), and part d) shows the corresponding
greybody temperature, T,,(t). Fits using Wien’s law, Golden
Search (GS), GS with the effective emissivity set to 1 (GSel), and
the Levenburg-Marquardt algorithm (LM) are indicated.
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Figure 7.2. Observed radiation history (a), x? statistic (b), greybody effective
emissivity (c), and greybody temperature (d) for Fe-Fe foil-LiF
target impacted by a tantalum projectile traveling at 5.41 km/s,
resulting in an Fe foil Hugoniot pressure of 227 GPa and an LiF
Hugoniot pressure of 122 GPa.
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In contrast with this last fit, the experimental and greybody fit results
displayed in Figures 7.2a-d, for an Fe-Fe-LiF target impacted by a Ta projectile
traveling at 5.41 km/s, exhibit a relatively constant greybody temperature (Fig-
ure 7.2d) with time and a systematically decaying greybody effective emissivity
with time (Figure 7.2c). In this case, T, (t) implies a relatively constant Tpt),
as we expect for a smooth interface (Grover and Urtiew, 1974; [5.11] above) or a
reshocked interface with §.,,>> 2\/Ith_exp (Figure 5.3d) or 5,,w<<2\/rc,._t—m, (Figure
5.2b). The reshocked interface with 6,w>>2\/;,]>-ex_p is less likely than the latter
possibility, as implied by the the data-model comparison in Figure 4.5b. The
behavior of &,(t)~2¢,,{(t) reflects a shock-induced increase in the absorption
coefficient (i.e., a,g, >ay,) of of LiF via [6.6], [6.7] and [6.14]. Wise and Chha-
bildas (1986) found, via laser interferometry, that LiF remains essentially trans-
parent up to 160 GPa. The fluctuations in the fit after about 160 ns may be
due to wave reverberations or other dynamic effects, which are beyond the scope
of our model, and/or possibly to the influence of reshock at the Fe-Fe foil inter-

face, as mentioned above.

In judging the value of any fit, the resolving power of the data is an issue.
In particular, the ability of the data to constrain model parameters may be
judged through confidence limits (e.g., Press et al., 1986). We display these for
Fe-Fe-Al;0; and Fe-Fe-LiF experiments in Figures 7.3 and 7.4, respectively.
Parts a) and b) represent confidence limits for x,Z(50 ns) and x,#250 ns),
respectively. The darkest shaded (i.e., central) region in each diagram
represents that part of model-parameter space which explains 68.3% of the
data. Similarly, the 95.4% and 99.99% regions explain corresponding percen-
tages of the four-wavelength data. Note that these limits are consistent with
the trends in x,2(t) (Figures 7.1b and 7.2b). The basic information conveyed by
these diagrams is a measure of the uncertainty of the fits; for example, from

Figure 7.3, the fitted value of T,,(50 ns) has an uncertainty of about +400 K at
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Figure 7.3. Confidence limits for the LM fit displayed in Figure 7.1c-d near
the beginning (50 ns) and end (250 ns) of that part of the radia-
tion histories fit by the model. The designations 68.3%, 95.4%
and 99.99% refer to that fraction of the data (which total 4)
satisfied by the range of model values (¢,,T,,) encompassed within
the appropriate regions and contours, subject to the assumption
that the experimental errors are normally distributed.
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Figure 7.4. Confidence limits for the LM fit displayed in Figures 7.2¢c-d near

the beginning (50 ns) and end (250 ns) of radiation histories fit by
greybody model.
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the 68.3% level, and about 4600 K at the 95.4% level.

As stated above, the interface contribution to the observed intensity dom-
inates the SW contribution (Bass et al., 1987). On the basis of this observation,
we may reasonably fit a simplified version of the full radiation model to the
data via [7.5]. We do this for the Fe-LiF data fit to the greybody model in Fig-

ure 7.5. First, we note that, at t=0, I, 4 is, from [6.1],
Limod(2,0) = Exner{0)In(X, Toel0))

= [1 -t ™1 - 1 ][1 - rgl TP\ To{0)] [7.9].
So the magnitude of I,,,4(),0) is controlled by the reflectivities, ay:g,, and the
initial value of T, which is dependent on the values of Ty, AT,,, T,, and o,
through [5.12] in the simplest case. The greybody fits in F igure 7.2 suggest

that, for this experiment at least, T, (t) is approximately constant. Assuming

this and a5, = 0, we approximate [6.1] as
Bimod(Mt) = & per{t)Ia[As Ty 0)]

= (1 - 1ye)(1 = Ty )(1 = Typ)e 25/ b2 [\ T, (0)] [7.10].
In this case, the time dependence of I 4 is due solely to the SW transmissivity.
Using [7.10] in [7.3], along with T,,(0) = T,,(0), we may fit the Fe-LiF data for
aysw- We present the results of this fit in Figure 7.5. The data are cut off at
160 ns to reduce the influence of possible dynamics or Fe-Fe interface reshock
on the fit. The parameter values resulting from this fit are given in Table 7.1.
We eliminate r,¢ from the fit since it is equal to 0.08 for LiF, as estimated from
n=1.39, the index-of-refraction of LiF at STP (CRC Handbook). Since the
index-of-refraction of LiF seems to increase with pressure (~0.002/GPa: Burn-
stein and Smith, 1948), we expect g >r, for LiF. Clearly, LiF has lost some
transparency upon shock compression. The trend in a,g, toward lower values at

longer wavelengths is unresolved but consistent with the Bouguer’s law
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Figure 7.3a for the Fe-Fe foil-LiF target. We fit {7.9] to the first
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Table 7.1. Simplified Radiation Model Parameters.?

Wavelength (1-rg)(1-ryper) By ow
(nm) (m™)
450 0.76 137
600 0.56 134
750 0.68 125
900 0.67 122

For this fit, x=4.15 mm, t,,==390 ns, Ty, = 4200 K and r,o = 0.08 at all
wavelengths in fit.
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expectation that a, = 4mw,/X, if w,, the electromagnetic extinction coefficient
(Siegel and Howell, 1981, p. 427), is constant or varies inversely with X. As sug-
gested above, similar fits for Fe-Al,O3 imply that ay,>ays an intriguing pos-

sibility which we do not yet understand.

Lastly, we take the results of the greybody fit shown in Figure 7.1d for the
Fe-Fe-Al,03 experiment, assume T,,(t) = Tp,(t), and use [5.10] to write

1+o
erfe{pw/2V Keteyy }

With Tg,(0) - Tgy(tex,) = 1200 K from the fit displayed in Figure 7.1d, we may

calculate the trade-off between the FL-TW interface temperature due to

ATFW = [Tgb(o) - Tgb(texp)] [7‘11]‘

reshock, AT, and the ratio of the reshocked-layer thickness, &, to the FL
conduction length scale, \/K.FTQXP, for different values of the FL-TW interface
mismatch, o,,. These calculations, displayed in Figure 7.6, imply that the
larger the reshocked-layer thickness relative to the FL conduction length scale,
the higher the reshock temperature at a given thermal mismatch. For this par-
ticular experiment, we expect o,,<0.1 from calculations discussed above; we
also expect AT, <2000 K from the calculations presented in Figure 4.5a. In
this case, Figure 7.6 and model calculations imply that 6,wg2\/aex—p~10‘5m.
Since this is a film experiment, with d~10"%m, we tentatively conclude that all

of the film layer experienced reshock in this experiment.

§8. Summary

We consider the effects of release/reshock, phase transitions, and conduc-
tion on the shock-compressed temperatures of the target components and their
interfaces. Comparison of the model with the results of experiments on Fe-Fe-

LiF and Fe-Fe-Al,O5 targets suggests the following:
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Figure 7.6. Magnitude of temperature at FL-TW interface due to reshock,
AT, versus the ratio of the reshocked layer thickness, §,, , to the
conduction length scale, \/kgteyp,. This trade-off is constrained by
the magnitude of Tg,(0) — T,y (texp) from from the greybody fit for
the Fe-Fe-Al,03 data displayed in Figure 7.2a.
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Release/reshock calculations for Fe-Fe-Al,O; targets, in comparison with
the experimental results of Bass et al. (1987), suggest that Fe experiences
approximately 200-1500 K of reshock heating at both Fe foil-Al,O, and Fe
film-Al,O; interfaces when released from ~ 245-300 GPa to interface pres-
sures of 190-230 GPa. Below 190 GPa, reshock for Fe-Al,O, interfaces
appears to be minimal. Both the data and calculations suggest that the
degree of reshock is strongly pressure-dependent, which is consistent with
the results of Urtiew and Grover (1974). In contrast, Fe released from the
same range of Hugoniot pressures to Fe-LiF interface pressures between =~
130 and 160 GPa experiences little or no reshock. This more ideal nature
of Fe-LiF interfaces is enhanced by the fact that, besides being a poorer
shock-impedance match to Fe than Al,O, it is also a poorer thermal
match, resulting in less change in the interface temperature away from the
Fe-release state temperature. Comparison of data and calculations for both
of these windows suggest that, while attention to the initial conditions of
the interface is essential to minimize reshock, a more important factor may

be the choice of window.

In the absence of energy sources and significant energy flux from other
parts of the target, the rate of change of the interface temperature, Toerlt),
is proportional to —pexp(-u?), where u = &, /2\/—1&'3 For Fe at FL-TW
interfaces, @;fvlo pm; consequently, a 100 um reshocked-Fe layer
would relax very little, remaining near Ty {(0) on the time scale of the
experiment. However, if §,~1 pm, Ty (t) relaxes almost instantaneously

to its value Ty (00). Ty (t) is resolvably time-dependent for &,,~2v Kebexp:
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Greybody fits to an Fe film-Al,O3 experiment of Bass et al. (1987) show the
greybody effective emissivity, égb(t), to increase slightly with time, while the
greybody temperature, Tgy(t), decreases with time. This behavior is
characteristic of most Fe-AlyO; experiments. The decrease of T, (t) can be
explained in terms of the model for T, (t), and it implies that 6Fw~2\/n,,t_m,
for this experiment. Further, assuming Tg(t) = Ty {t), the greybody fit
constrains the amount of reshock, AT, , to be <2000 K with o,,,~0.1 and
%32@. A slight decrease of the Al,O; absorption coefficient upon
shock compression can explain the slight increase of &g,(t) with time. This
may be consistent with the observation that the refractive index of Al,O;
seems to decrease with pressure. In contrast, greybody fits to data from an
Fe-Fe foil-LiF target show a relatively constant greybody temperature and
decreasing greybody emissivity. The constant greybody temperature
implies a constant interface temperature, as we expect for an interface
experiencing minimal reshock, while the decaying &(t) is consistent with a
shock-induced increase in the absorption coefficient of LiF. Setting
Tpr(0) = T,,(0), we fit a simplified version of the full radiation model to
these data to find a,,,~100 m™! (Table 7.1) for LiF, shocked to 122 GPa in

this experiment.

Finally, we note that the equilibrium thermodynamic Hugoniot tempera-
ture of Fe is strongly influenced by electronic and/or anharmonic contribu-
tions to c, at high pressure, as evidenced by both 1) the results of Boness et
al. (1986) when used in Equation (8), and 2) by requiring the solid Fe
Hugoniot and an extrapolation of the experimentally constrained Fe melt-
ing curve (Williams and Jeanloz, 1986) referenced to this Hugoniot, to
intersect at 245 GPa (Brown and McQueen, 1982). This last constraint
provides a value of Q(p)=0.046 J/kg'K?, as compared to
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I'(p;) = 0.090 J/kg'K? from the work of Boness et al. (1986), suggesting
some anharmonic contribution to cr of e-Fe. These results substantiate the
arguments of Brown and McQueen (1982, 1986) for the importance of
including electronic contributions to ¢, when calculating T, of shock

compressed metals.
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§9. Appendix A: Equilibrium Thermodynamics and Shock Compress-
ion

The calculations discussed in the text for Fe-Fe-Al,0; and Fe-Fe-LiF tar-
gets are based on classical (i.e., equilibrium) thermodynamic models of the
Helmbholtz free energy, F(T,p), for the solid- and liquid-states of Fe. As dis-
cussed in the text, this model is based on 1) a Debye model for the harmonic
contribution and 2) the low temperature (T < <T,, the Fermi temperature) elec-
tronic contribution and 3) high temperature (T>©,, the Debye temperature)
anharmonic contribution, which we combine for simplicity, since they are of the
same order in T. The liquid-state model is presented elsewhere (Svendsen et al.,
1987, Chapter V). In the last two parts of this appendix, we detail certain rela-
tionships between isentropic and Hugoniot states using this model, and a
method to recenter experimental U-v relations to the STP density of high pres-

sure phase, both of which are used in the calculations.
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A.1. Solid-State Equilibrium Thermodynamic Model

For a cubic or isotropic solid material subject to an isotropic state of stress,
the combination of the Debye model for the harmonic contribution along with
the high-temperature anharmonic and low-temperature electronic contributions
provides an expression for the Helmholtz free energy, F(T,p), i.e. (e.g., Wallace,

1972, Sects. 5, 19 & 24; [4.25] in the text)

F(T,p) = {4’(/’) + %VRGD(/’)}

+ 3uR{ln[1 _ e o] - %ED(XD)} T+ A(p)T? - ST()T? (A1)

Note that F has units of J/mol. For simplicity, we neglect possible band-
structure and electron-phonon interaction contributions to F in writing [A.1].
Relation [A.1] is correct to O(T™3) in the anharmonic contribution to F, and to
all orders for the harmonic contribution in the context of the Debye approxima-
tion. This slight inconsistency is due to the unavailability of a tractable anhar-
monic model, analogous to the Debye model, for the materials of interest. Also,
for Fe, we are guided by the results of Andrews (1973), who was able to fit vari-
ous data on the thermostatic properties of the a and e-phases with a Debye
model for the harmonic contribution to F, ignoring anharmonicity altogether
(although anharmonicity may be reflected in the value of his T'). As discussed
in the text, the anharmonic coefficient A,(p) is dependent on the particular
model chosen for the pressure and temperature dependence of the anharmonic
phonon-frequency spectrum. Since we do not have such a model for the materi-
als of interest here, we simply combine it with the electronic contribution to

form §2(p), as given in the text.

On this basis, [A.1] provides the means to a rational parameterization of

the approximate density- and temperature-dependence of a number of solid-
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state properties, such as the pressure, 1.e.,

oF 1
P(T,p) = p{m } ] = P(0,p) + 3vRpE (xp)T + EprT2 [A.2]

with
_ [ds ) . 9
P(0,p) = ,,{ o } + 2uRp0;, (A.3],

where ~, is the lattice Gruneisen's parameter in the Debye approximation, as

defined in the text. From [A.1], the molar entropy is given by

oF 4
S(T,p) = - I—! = 31}RI—F_ (X ) - Inl1 =~ e‘XD]I + QT {.A;.‘l].
l aT ]p l 3 D\AD L ]
The isothermal bulk modulus is given by
oP
K(To) = p{ 2] =K(p) [A.5]
Op )
B}
+ 3VRP’YD(1 —Qqp — 3’7D)ED(XD)T + QVRP'YD{ [X—DDXD—I']_}
e —

+ -%-pw(l - w)QT?
with

K(0,0) = P(0,p) + p{p{ i‘;‘}} + ,,2{ :1(1_2;;} } + p{%uR»yDeD(qD _ q,,)}
and

dln~, }
= —{ ———R .

which is assumed constant. The molar heat capacity at constant volume (den-

sity) is
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CT.p) = —T{%}p - 3VR{4ED(XD) _ @%} +0T (A7)

The change in pressure with temperature at constant density given by, from

A.3]

pCy = {-g%}p = oK, = 31/RMD{4ED(XD) - [e_iXTDl_]-} + pwQT
A.8].
From [A.7] and [A.8], we have
YCy = 1Cy + (w - )T [A.9],
and so
N =+ (@ 7T [A.10],

C,
which is very weakly temperature-dependent above 6, since w~~, and Q3LR.

Other properties given by a ratio of the derivatives of F(T,p) include the

coefficient of thermal expansion,

~C

Q’(T,P) = £ Kl- ’

[A.11]

the isentropic bulk modulus

K(T,p) = K; + p(»C )T , [A.12]

and the heat capacity at constant pressure,
Cy(T,p) = Cy(1 + anT) [A.13],

These are the solid-state model properties used in the text.
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A.2. Connection of Isentrope and Hugoniot

To use the model as detailed above, we need to calculate the change of cer-
tain model properties, such as P, with density at zero temperature. So, we
relate the zero temperature model properties to the known change in density

along an appropriate isentrope or the Hugoniot, as follows. From [A.3], we have
1
P(0,0) = P(Typ) - 3vRp1:Eo(xm) Ty — 5 pwQTE [A.14]
with xp, = 6,/T;. P(Ty,p) is given by [4.27] in the text, t.e.,

P
P(Tgp) = pity Deg(py) + —pf’ [1—(1+§7H)m:1 (R+R) - R [A.15]
1

and Aes‘ is calculated numerically, as discussed in the text. In a similar fashion,

we have, from [A.5] and [A.12],

K{0,0) = K(T,p) - p7¢, T - 3vRpY(1 - qp = 375)Ep(x0)T

YpXp

- 9va’7D—[;XD—_1]-

T - %p(l — W T? [A.16].

To get an expression for K (T,p) along the Hugoniot, we follow McQueen et al.
(1967) in equating an infinitesimal change in specific internal energy (SIE) along
the Hugoniot with one along an equilibrium thermodynamic path, as follows.
From the first law of equilibrium thermodynamics, we may write, at a given

density p., the relation

e(s,p;) = e(spp;) + i sT(s',pr)ds* [A.17],

where e(s,p) is the SIE and s is the specific entropy. Since we have assumed the
shock-compressed state is one of thermodynamic equilibrium, we may set

Pr="Pw Sr=Sy, and write

de(s,p,) = de(s,pp,) + d{ f sT(s"‘,pu)ds‘} [A.18],
S
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giving us an expression relating an infinitesimal change in SIE along the
Hugoniot, de(s,;py), in terms of one at the same density but at another specific

entropy. From [4.1] in the text, we have another expression for de(s,y0,), t.€.,

1 1
de(sypy) = " [F+Fldp, + 257 TP [A.19].

H 1

Substituting this into [A.18], we have

P 1 1 s * *
Tds + —2'de = —7[PH+Pi]dpn + _ZanPH + d{ T(S ’pH)d's } [A'QO]'
Py 2py 20

Now assuming s==s(P,p) (i.e., e=e(P,p)), we have

Tds = —dP - Ka g, [A.21].
P P2y

Putting this into [A.20] and rearranging, we obtain

Ky = %P = S0lBtR] + -+ 3 { x|

H

1]
dp

X

T n9ds%) A.22],

H Sy

where vy = Y(sppy). Letting P—P, and s—s,, we obtain the desired expression
_ 1 db, 1
Ki(Twr) = [1_(1'*'?'71-1)771-1] dn + E%{[PH_R] [A.23].
H

In the text, we further assume M = Yoo €., that ~ is a function of density

alone.
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A.3. Relations Between Isentropic and Hugoniot Properties

The purpose of this part of Appendix A is to detail some relations used in
the text to relate Hugoniot information to the isentropic properties of low- and
high-pressure phases referenced to the same initial state (i.e., T; and P, in the
text). Among other things, we derive an isentropic equation of state for high-
pressure phase of the material based solely on the U-v relation for this phase, as
mentioned in the text. First, we outline a number of established relations based
on the balance relations for mass and momentum across the shock front and a
relationship between the shock-wave propagation velocity and material velocity
(i.e., U-v) relation, and then we show how to use these to find various isentropic

properties of high-pressure phases described by the U-v relation.

Assuming the material responds adiabatically as a fluid in hydrostatic
equilibrium to shock compression, the balance relations for mass and momen-
tum across a shock front separating a material into two adiabatic, homogeneous
fluids in hydrostatic equilibrium are, respectively (see the Introduction to this

thesis, [1.30] and [1.50]),
Uy = pPU; [A-24]
and
[IPl] = o£Us{IvI] (.25,

where [[P|]=F,~P is the jump in pressure, and [|v||=v,-v; the jump in material
velocity, across the shock front; P, and v; are then the pressure in and the veloc-
ity of the material ahead of the shock front. Also, U;==u-v, is the speed of pro-
pagation of the shock front with respect to the shocked material, U=u-v, is
that with respect to the unshocked material, and u is the speed of displacement
of the shock front (i.e., the “intrinsic”” velocity of the shock front). Equations
[A.24] and [A.25] relate 3 unknown, i.e. u, v, P, and p,, assuming the initial

conditions v;, B, and p{* are known. However, since U, = U[|v|], we can reduce
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this number to 3 (U, F,; and p,) by making the constitutive assumption that U,
may be written as a function of [|v|] in a Taylor’s series about v;. To second

order, this is

U; = a; + bj[|v]] + ¢;[Iv]]* + O([|v[]®) [A.26]
with
uE “3}]11{0{%} [A-27]
. dU;
bi = ulhlﬂo{ d_[IVII'} [A.28]
and
1. d?y,
4= ?uihrﬂo{ T } (4201,

giving us 3 equations, [A.24], [A.25] and [A.26], relating 3 unknowns, [|v|], p,,
and B, Note that a; and b; are usually positive, while ¢; is usually negative.
Using the relative compression, w=1-p%/p,, as defined in the text, we may
write [A.24] as

vl = nU; [A.30].

Putting this into [A.25], we have either

1
U= (P [A31)
or
_
vl = (e (A32],

depending on whether or not we eliminate (|v|] or U, respectively. From [A.25]

and [A.30], we obtain a relation for U, in terms of a;, b;, ¢; and n,, t.e.,

-
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¢’ iUt — [(1-bn,)? - 22¢m2U2 + a2 = 0 [A.33].

As shown by Prieto and Renero (1970), for bjn,<<1, [A.33] has the solution

a?
Ui2 = > 2 [A.34].
[(1-bin,)*~2a;c;n7)
Putting this into [A.31], we obtain
an 2
pia;’n
[IP]] = —— [A.35]
(1-bim,)*-2aicm?
which we may rearrange for n,([|P]), i.e.,
k
= gy Ul 2ac ) A.39]

Note that c;, when resolvable by experimental data, is usually negative (e.g.,
Pastine and Piacesi, 1966; Ruoff, 1967; Prieto and Renero, 1970; Brown and
McQueen, 1982). In this case, we see that B{c¢;=0)—oc0 as by,—1, but
P,{c;<0)—p;a;’b;/c; in this same limit (Prieto and Renero, 1970). Clearly, c;
cannot equal zero for physically-reasonable asymptotic behavior. However, if
| ¢; | <<b;?/4a; (Prieto and Renero, 1970), setting ¢;=0 for bin,<<1 is at least
mathematically valid. If we do this, [A.35] reduces to the so-called shock-wave
“‘equation-of-state’” (McQueen et al, 1967). For ¢ and/or other high-pressure
phases of Fe, for example, |c;| should be less than 1.6X107*s/m (using the
appropriate parameters in Table 1) by implication of the apparent accuracy of
the linear fit to the U-v data (Brown and McQueen, 1986).

Following Pastine and Piacesi (1966), we may substitute [A.31] into [A.26]

and obtain

a, = lim {-I—-UI—)-U- }% (A.37).

(M=ol ¥ 71y

Since the limits p,—p? 7,~0 and [[P||—0 are formally and physically
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equivalent to [|v|]—0, [A.33] becomes

0
a.i='6'

[A.38],

an indeterminate form. However, since both [|P|] and 7, are analytic functions

of n, or p, via [A.35] and by definition, respectively, we may use L'Hopital’s rule

to evaluate [A.37], i.e.,

a; = lim [
1 p—of { pl } de

or

a; = lim {E}l}
ar—ef U py

with

KHEPH[%?]- =(1—nH)[-g%]

In a similar fashion, we find an expression for b, 1.e.,
1 im

with

el
l
————
n
—
I

1 . 11
= o {2 0D + Jm K )

with

I;H(l-nﬂ)Q[ z%) -1

[A.39]

[A.40]

[A.41],

[A-42),

[A.43].

[A.44],
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[A.45)

' d’K
= (2]

and

] d3PH / /
KKn = Kin(l—nﬂ)?'[ﬁ] - Ky +2)(Ks +3) [A.46].

H
Since the initial ([|v|]—0) slope and curvature of the shock-compression locus

are equal to those of the isentrope referenced to the same initial state (Bethe,

1942), we have

lim [K,] = K& [A.47)
Ao
and
p,l,i—r.on[KH | = KSIQ [A.48].

And from [4.10] in the text, we may relate K;,' to K%"” , t.€.,

lim [KKy' ] =KIKS' + 2by2(o?) [A.49].
o of*

In these relations, K¢, KS?I and Ks?” are the isentropic bulk modulus, and its
first and second pressure derivatives at constant entropy, s;=s(T;,P), of the

low-pressure phase, a.

Experimental U-v relations applicable to high-pressure phases of a material
are usually centered at the initial density of the low-pressure phase, pf. To
recenter this U-v relation to the appropriate phase, 8, and obtain estimates of
certain properties of # referenced to pi=pP, we calculate new values of a;, b; and
¢; (which represent the experimentally constrained U-v relation for the B-phase,
centered at pf), i.e,, a*, b* and ¢. These values of the U-v coefficients, cen-
tered at p;, then represent a so-called “metastable’” U-v relation equivalent to

that obtained by McQueen et al. (1967). To calculate a*, b;* and ¢;* from



- 127 -

p{, a;, b, ¢; and p;, we first note that the pressure and density of the A-shock
state are related by [A.26] if a;, b; and ¢; in [A.26], result from a fit to data from
that part of the U-v plane representing 4. Instead of [A.28] and [A.29], we now

have, for the metastable U-v relation

1

U2 = P A.50
Ui = 2= 450
and
n‘
(v']}* = ==[IP]] [A.51],
p;
where [|P|] is still given by [A.26]. With these, the procedure to find expressions

for a;*, b;* and ¢;* is exactly analogous to that just followed in obtaining [A.30],

A.32| and [A.34] for a;, b; and ¢, respectively. All we do is replace U, with U*,
1 1 1 1 1

[[v]] with [[v*]], p# with p;, a; with a* b; with b;*, and ¢; with ¢*, except in

[A.26], because it gives [|P|] and p, for B, referenced to p?, as stated above.

Consequently,
K 1/2 K l/z
8t = {__*1} — {_S'} [A.52]
Pu ) p=n pi
. 1 ' 1 /
and
* 1 * « N
¢’ = Fai,{2bi (2-b") + KKy ]p‘.Fpl}
1 « 1
= ?{2bi [2-b;*+1(pi)] + KsKsg } [A.54].

1

From this, we see that if ¢;~0, then

KKs' = [Ky -7-41(p)] [A.55]



- 128 -

and this is the case for most materials from the experimental-resolution point-

of-view. Assuming that ¢;=0, [A.35], [A.41], [A.49] and [A.51] provide

p2(1 + bim) %

;(—3;)} a; [A.56],
(1 - bny)

and from [A.35], [A.43], [A.50], [A.51] and [A.53],

8" = (l—ni){

[4(1 - n)b; + (2 - m)bm; - 1] }

(1 = bim)(1 + bimy) [A.56]

where 7;=1-p{/p;. Note that, from these relations, a;*—a, and b —b, as
Pu—p7, i.€., as 7;—0. In principle, [A.40], [A.42] and [A.44] may be used as con-
sistency relations between Hugoniot data and other types of compression data
for appropriate materials. materials. Note that we need pj=pf to obtain a*
and b;* from this method. If we know this density sufficiently well, we also gain
estimates of Ky and Ks" of the high-pressure phase, as well as a;* and b;*. In
this paper, for example, we use [A.45]-[A.46] to estimate the isentropic proper-

ties of liquid-Fe referenced to STP given in Table 4.1.

§10. Appendix B: Isentropic Release and Reshock

Considering the shock-compressed material as a thermodynamic “system,”’
and the “lab” as its “surroundings,” a balance of energy implies that any
infinitesimal change in the specific internal energy of the system, de(6q,6w), is
due to the difference between the net amount of heat transported into the Sys-
tem from the surroundings, 6q, and the net amount of work done by the system
on its surroundings, éw. If we assume the material to be internally in thermo-
dynamic equilibrium, then de = Tds - Pdv and any infinitesimal change in

specific entropy of the system is given by

ds = -+ §q - %[5“, _ Pdv] B.1].

L
T
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Adopting the idea that heat transport in or out of the target is insignificant on
the time scale of release, we assume that the release path is adiabatic (6q=0).
Further, we assume that the mechanical work done by the system during release
is entirely reversible (6w = Pdv). In this case, the release path is both

isentropic and adiabatic.

B.1. Phase Transition during Release

If a phase transition occurs during release, the constraint of isentropic
release in turn places constraints on the phase transition. Consider a first-order
transition from the shock-compressed phase 8 to a release phase 7. In this case,
the total specific internal energy, e, total specific entropy, s, and total specific

volume, v, of the two-phase system may be written in the form
¢ =(1-x)¢" + xo" [B.2],

where x is the mass fraction of , and ¢ = {e,s,v}. As with a single-component
system, an infinitesimal change in specific internal energy of the two-phase sys-
tem, de, is balanced by the net heat flow into the system from the surroundings,
6q, minus the net work done by the system on its surroundings, éw. Assuming
that each phase is internally in thermodynamic equilibrium (¢.e., temperature,
pressure and composition are homogeneous within the phase), an infinitesimal

change in total specific entropy of the two-phase, single-component system is,

from [B.1] and [B.2],

TPds = &q + x(T? - T")ds" + {(gﬁ - g") + s"(TP - T”)} dx - éw; [B.3]
where
fw;, = dw - PPd[(1 - x)v ] - P™d[xv 7]

is the nonrecoverable work done by the system on the surroundings, and g is
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the specific Gibbs free energy. The second term on the right-hand side of [B.3]
is the entropy produced by heat flow between phases, while the third term is
that produced by mass exchange between phases. A sufficient, but not neces-
sary, set of conditions for isentropic (ds=0) release through the mixed-phase
region is then, on the basis of [B.3], (1) adiabatic release (6qg=0), (2) mechanical
equilibrium (P=P7) in the system plus reversible (Pdv) work on the surround-
ings (P=PP=P7"), (3) internal thermal (TP=T™) and (4) chemical (gP=¢")
equilibrium. Conversely, if these conditions prevail, release through the mixed-
phase region will be isentropic. Clearly, even if release is isentropic through the
mixed-phase region, it is no guarantee that the phase transition will occur in

thermodynamic (¢.e., thermal, mechanical and chemical) equilibrium.

We choose to satisfy the constraint of isentropic release by assuming the
conditions discussed above consistent with this, i.e., 1) release is adiabatic, 2) all
work is recoverable and 3) the phase transition occurs in thermodynamic equili-
brium. On this basis, we need an expression for the change in pressure and
temperature across an isentropic phase transition. With s=s(P,T) for each

phase, an infinitesimal change of s in the mixed-phase region is, from [B.2] with
¢=S,

ds = [cf + xAc.]dInT - [0Pv? + xA(av)]dP + As dy [B.4],
where c; is the specific heat at constant pressure, v is the specific volume, a is
the thermal expansion, and A¢ = ¢* — ¢ is the jump of any quantity ¢ across
the mixed-phase region. For an isentrope through the mixed-phase region,
ds = 0. Putting this condition into [B.4], and noting that pressure and tem-
perature do not vary independently along the equilibrium phase boundary, i.e.,
Av dP = As dTg, we have

{(cf + xAc)Av - [0PvP + xA(av )| Te(P)As}dP

+ As Te(P) As dx = 0 [B.5],
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Now we show that this relation for an isentropic path through the mixed-phase

region is separable, and so an exact differential. Let
I(P,x) = (cf + xAcp)Av — Teg[aPv? + xA(aw )] As [B.6)
and
X(P) = As Tgp As [B.7].
Then [B.5] becomes
II(P,x)dP + X(P) dx =0

From [B.6] and [B.7], we have

an

IL(P,x) = { B

} = Ac, Av - T Alav) As [B.8]

and

X(P) = {%} = As {%’B} As+2As’I‘m{ dd‘i‘;s}

PB

= {Av + 2T,,B{ ddf }m} As [B.9].

Note that both of these partial derivatives are functions only of pressure along

the phase boundary. Since at any point along the phase boundary, P? = P7,

we have

{ dd?)s }m A:: Av _ Alav) [B.10].

Putting this into [B.9], we have

Xy(P) = [Av -2 T A(av )]As + 2Ac, Av [B.11].

The condition for [B.5] to be an exact differential is X, = I1,. Since, from [B.8]

and [B.11], this is clearly not true, [B.5] is not an exact differential equation, in
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its current form. However, we may attempt to put it into such a form by solv-

ing
pII(P,x)dP + pX(P)dx = 0 [B.12],

where u is the integrating factor. Putting these into the exactness criterion, we

require
[l‘n]x = [uX], [B13]

Since we already know II(P,x) and X(P), we solve [B.12] for u, i.e.,

Hpy - Xp, + (I, - X Ju =0 [B.14].
Note that {II, — X;) is a function of P oniy. In this case, we set Ky = 0 and
solve
(IL, - X;)
Hp = —X'X—P- [ [B.15]

to obtain the integrating factor

ue)=expf [T L {A(av)— T:(;‘) {1 + AA‘;” } }dP‘ (B.16].

With u(P), [B.5] in the form [B.12] is now exact. On this basis, we may solve
[B.5] as follows. We define

¥:(P,x) = u(P) II(P,x) [B.17)
and
¥, (P,x) = u(P) X(P) [B.18].

Integrating [B.17] with respect to pressure at constant composition, we obtain

Y(P,x) = f “u(P*) TI(P*,x)dP* + g(x) B.19],
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where g(x) is at most an arbitrary function of composition. Putting this into

[B.18], we have

V,(P) = uP)X(P) = [ u(P*YLP*x)dP* + g,(x) [B.20].

Solving this for g, (x), we find

P * *
8x() = BPIXP) - [ aPL(P*,x)dP [B.21]
Even though it appears that g(x) is a function of pressure, it cannot be, by its
definition, [B.20]. Further, since
IL(P,x) = AcpAv — TA(av )As [B.22]
is actually not a function of x, we have

g(x) = x8,(x) [B.23],

and so

¥(P,x) = xu(P)X(P) + f Tu(P*HIIP* x) - X IL(P*)}dP*  [B.24]

with
II-TI, = cfAv - TmaPvPAs [B.25).

Putting [B.25] into [B.24], we obtain

Y(P,x) = xu(P) X(P) + [Tu(P)[ct Av - Tw(P*)aPuPAs]aP*  [B.26].

Note that ¥(P,x) is equal to some constant since

W, dx + ¥,dP =0 B.27]
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by definition, [B.12] above. Relation [B.26] is subject to the following boundary

condition:

P,
U(Ps, x = 0) = f Pgu(P)[c{fAv - Tee(P)oPvPAs]dP* = constant [B.28].

Using this condition, we have the solution to [B.5] for x as a function of pres-
sure along the phase boundary, s.e.

x(P) = L@ u(P*)[Te(P*)aPvPAs - cfAv] dP*  [B.29].

m
In [B.29], P is the pressure at which the release path of 4 intersects the ™
phase boundary, t.e., where x = 0. In the models, we evaluate [B.29] numeri-
cally along the phase boundary, Te(P), until 1) x =1 (complete transforma-
tion) or 2) Ty = Te(F,) (partial transformation). In the former case, the new
phase then releases to P, along a path beginning at the pressure and tempera-

ture on the phase boundary where y = 1.

B.2. Complete Release and Reshock

Since the free surface of the completely released material has not been
shocked, an impedance match between 1) the unshocked material, which
impacts the next target material at the free-surface velocity achieved upon com-
pPlete release (see text), and 2) the next target material provides us with the
pressure of the DP or FL reshocked state, Pss. This reshocked state quickly
relaxes via reverberations to a state with the same normal components of stress
and material velocity as the shock-compressed state of the next target com-

ponent. We assume that this occurs isentropically.

The complete release process brings the material to a low-pressure state

with a lower density and higher temperature than the density and temperature
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of the unshocked starting material. From this point of view, assuming all states
achieve thermodynamic equilibrium, we may use an energy balance in the
pressure-density plane, such as that used in the obtaining the expressions for T
in the text (e.g., [4.46]), to connect the reshocked state with a state along the
principal Hugoniot of the reshocked-state phase having the same density as the
reshocked phase. Referring to Figure B.1, assume the shocked material experi-
ences complete release to a pressure P, an absolute temperature Ty, and a phase
7 in thermodynamic equilibrium possessing a mass density pr=p"(Tg,P,), specific
entropy sy = s"(Ty,P,), and specific internal energy ef’=e(sy,p5) (point A, Fig-
ure B.1). Further, assume this material is immediately ‘‘reshocked” to a pres-
sure Pgs, temperature Ty, and phase § in thermodynamic equilibrium having a
mass density p& = p’(Tis,Pws), specific entropy s = s%(Trs,Prs), and specific
internal energy eRiEe(s,g,pRg) (point E, Figure B.1). Also, assume that the
material deforms as a fluid. In this case, we may connect the complete release
(point A, Figure B.1) and reshocked (point E, Figure B.1) states by the Rankine

Hugoniot relation, 1.e.,

6 1

€ns — €p =

—~Tzs[Prs + P} [B.30]

with

s = 1 - pf /&
being the relative compression of the material along the reshock path. In the
text, we used the concept of an equivalent thermodynamic path to connect the
initial and shock-compressed states of a material, occupying different phases of
that material. Applying this to the present case, we may connect states A and
E in Figure B.1 via a path A»B—C—D—E using a known reference Hugoniot,
which ideally would be the “principal” (i.e., referenced to STP) Hugoniot of 4.
Assume that the reference Hugoniot begins at a demsity pf = p(T,P),
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Figure B.1 Diagram depicting release-reshock calculation.
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represented by point B in Figure B.1. The reshock path between A and E is

then represented by

e — e = e(s,0) — e(sd\pel)

+ e(sid,pé) - e(siaypis)

+ e(s,od) — e(sd,0d

1

PR

Nss|Prs + P

(A->B)
(B->C)

(C->E)
(A->E)

[B.31]

from [B.30]. Unless otherwise noted, all quantities apply to & in the rest of this

section. Since part of the path represented by [B.31], i.e., B—D, is the

equivalent equilibrium thermodynamic path for shock compression of the

material from pi‘s to pl, we have
e(Swprs) — €(s;,0;) = e(s;,0rs) — e(ssp))

+ e(SwPrs) — €(5sPrs)

1
= 2_m7h-l[PH + P,]
with
M= 1- pi/prs
and
2
P.=P + j'_n“_2
(l‘aiﬂn)

from [4.15] in the text. Substituting [B.32] into [B.31], we have

1

Pr

Nrs|Prs + P.] = e(s;,pi) - e(sn»PR")

(B->C)

(C->D)
(B->D)

B.32]

(A->B)
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1
+ E;)i-flu[P w + P

+ e(SRs;Pm) — (S, Pxs)

(B->D)

(D->E)

[B.33].

Assuming, as before, that ~, the equilibrium thermodynamic Grineisen’s param-

eter, is a function of density alone, [16] from the text allows us to write, for the

path from D—E, the relation

c(srrtrs) - e(ompre) = ———{ P - P}

RS /RS

B.34]

with Yas = ~(prs). Substituting [B.33] into [AL.32] and rearranging, we obtain

with

and

ToPes = (1-6)T,Ru + 58P, + Al meieg

—1‘ /pl

Tes = [1_(1 +%’7RS)7’!€]

Ty= [1—(1+%’73s)771q]

Aey = [e(si’pi) - e(sn”,pg’r)] .

Requiring Pes—P,; as pes—py', We obtain from [B.35]

P=(1- ¢)[THI)H]pRS ozt 7 FOP, + piye Aeg,

Rearranging [B.36], we have

Bep = =2l (- 2to)p - (00,2, - )

Ry X

PR TR

[B.35]

[B.36).

B.37],
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giving us an expression for the difference in energy between the complete release

and reference states. If P, = 0, then

’}71 (1-—¢)[THPH]pm =p *

R

Aey =

With these relations, we obtain a metastable U-v relation (Appendix A), which
allows us to calculate the density of the reshocked state from the pressure, and
with both of these, we we calculate the temperature via the appropriate expres-

sion in the text.

§11. Appendix C: Energy Transport Model

In this appendix, we 1) derive conditions under which radiation and/or con-
duction may be an important means of energy transport in the shock-
compressed or released states of the target components, and 2) establish energy
balance relations for the target components to be used in Appendix IV and the
text. We attempt 1) via a dimensional analysis of the local energy balance in a
radiating, conducting target represented as a rectangular Cartesian continuum
with material properties assumed to be isotropic and homogeneous in the refer-
ence (deformed) state. In constructing this energy balance, we assume that the
radiant energy density and radiation stresses are negligible in comparison with
the corresponding thermomechanical quantities. We also assume an equilibrium
caloric constitutive relation for the specific internal emergy of the relevant
deformed state of each target component. With the deformed state as the refer-
ence state, then, we may assume, for example, that the components of the heat

flux ¢° are given by the classic Fourier relation in an isotropic medium
q' = -ké'7 T ; [C.1],

where k is the thermal conductivity. Under these circumstances, the local bal-

ance of energy around the (deformed) reference state R is represented by
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Pr Cor G, T(x',t) = KT ;5 (xf,t) - he L (x¥8) + r(xf,t) [C.2].

In this relation, T is the absolute temperature, h' are the components of the
radiant energy flux, and we have combined terms for the specific internal energy
supply and mechanical dissipation rates to form r(x',t). Also, Pr Cpr and ki are
the density, specific heat at constant pressure and thermal conductivity of the
reference state, R. Note that, in [C.2], time is judged relative to the beginning
of the reference state, 8,=8/4t, and ¢,,- denotes partial differentiation of any
field quantity (x',t) with respect to x’, the coordinates of the reference
configuration R. Of the terms in [C.2], neither h",,- , the divergence of the radia-
tive flux, nor r, the specific internal energy production rate, is specified. To find

an expression for h",,- , we first need to discuss radiative transport in the target.

All radiative transport models discussed in this paper are founded in
geometric optics and the classical equation of transport ([C.3] below), both of
which assume an optically isotropic propagation medium (i.e., one with a uni-
form index of refraction). The form of this equation used in this appendix
presumes that 1) all processes affecting the observed radiation intensity (scatter-
ing, absorption, etc.) are independent of the intensity of the sources and 2) any
scattering is elastic and isotropic. Under these conditions, the change in the
quasi-static spectral intensity, i, (s7), at a point P(x/) in the direction ¥ is

given by (e.g., Siegel & Howell, 1981, Eq. 14-4)

s / . . o o / *
s/ jS)\' == —a)‘i)\ + a)‘l)‘e/ - U)‘lxl + 4—k-f 15N (w‘)dw [C.3]
To=4r
This is the radiant energy transport at a point P(x7/) per unit time, per unit
projected surface area normal to ¥, per unit wavelength interval d\ about a sin-
gle wavelength X\, per unit solid angle in a single direction 3. Note that the sub-

script A denotes a spectral quantity. i)\/ is quasi-static because we assume it is

not explicitly dependent on time, but only implicitly so through temperature,
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etc.. In [C.3], 0;=0/0s7, ay, = a,(\,T,P) and oy = 0,(\,T,P) are the spectral
absorption and scattering coefficients, respectively, and iy, = iy, (\,T) is the
spectral emission intensity, all along §. The first term on the right-hand side of
[C.3] is the loss of intensity by absorption (including the negative contribution
from induced emission), the second is the gain by all emission processes except
induced emission, the third is the loss of intensity by scattering, and the last is
the intensity gained by scattering into the S direction from the solid angle w.
Note that we assume, in writing [C.3], that the wavelength of the radiation is
not changed as a result of these processes. If we integrate [C.3] over all solid
angles and wavelengths, assuming any scattering to be isotropic, we obtain h",,-

at a point P(x7), t.e.,

hi,; = 4r fo Zas(Alixe (\*) = TN [C-4]

(e.g., Siegel & Howell, 1981). In this relation, the first term represents the rate
of emission of radiation per unit volume in all directions, while the second,

given by

20 = [ i) (')t

w=4r

is the radiation intensity scattered from all directions into P at wavelength \.
In principle, we could substitute [C.4] into [C.2] and try to solve the resulting
nonlinear integrodifferential equation for the temperature field in the medium of
interest. However, here we want only to establish the magnitude of h",,- relative

to other terms in the energy balance, [C.2].

To judge the relative magnitude of the terms constituting [C.2], we render

them nondimensional (ND) by the following transformation

{x', t, T, b, r} — {x€, to7, T, + AT O, h h', rr} [C.5].




- 143 -

In this transformation, ©® and T, are the ND and reference (e.g9., Hugoniot or
release state) temperatures of the material, while AT, is the difference between
Tk and some *“maximum” possible temperature such that ©<O(1). For exam-
ple, if T, is the release-state temperature, AT, represents the difference between
it and the reshocked-state temperature at the same pressure (see text). Substi-

tuting [C.5] into [C.2], we obtain

88 ~Pey 16 ;; + Boglh'; = Dage [C.8].
In this expression,
2
Pe, = Sl
tekp

is the Peclét number, x =k_/p.c. is the thermal diffusivity,

— PrCprAT
T thR
is the Boltzmann number, and
r.t
Da=——R& __
" e Ty

is the Damkohler number, of state R. Pe,, Bo, and Da, are, respectively, the
ratios of 1) free enthalpy flux to conductive flux, 2) free enthalpy flux to radia-
tive flux, and 3) generalized internal energy supply rate to free enthalpy flux.
We are particularly interested in Pe, and Bo,, since their respective magnitudes
will control the relative contributions of conduction and radiation to the energy
transfer in the interior (away from the boundaries) of any layer of the target
model. To obtain the magnitude of Bo,, we first require an expression for hg,

which may be obtained from [C.4]. First, we assume i,, () is given by
i)\el ) = ikpl(n)\)"T) [C.7],

where iy,(X\,T) is the Planck function and n, is the index of refraction of the

medium around P. Then, defining 1), the Planck mean absorption coefficient
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(e.g., Siegel & Howell, 1981)

[ a0\ TP) iy pi(my, ), TN

<a> pl(T’P) =

i (ax
0

and 2), the incident mean absorption coefficient

j; “ay(\T,P) T, (\)dX

<a>in(T,P) =

Lm0

0

where
o0
T= TN )dX
J
and noting that, if n, is independent of X,

[ Tix (dx = n2o T4,
0

[C.8]

[C.9]

(where 0,=>5.6696X10 W /m?-K* is the Stefan-Boltzmann constant), we may

put [C.4] in the form

hi; = 4n] <a> 0?0 T - <a>, 7]

[C.10].

Nondimensionalizing [C.10] with the appropriate transformations in [C.5] plus

T—T,t, we have

. h
hi; = ;ﬁ [ <a>, 1+ 28] - <a>, 7]
R

[C.11],
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where T,=n? o T4,
hy = 4mxa.n20 T2
and &, = AT,/T;. Substituting h, into the Boltzmann number, we obtain

— _ PeCopATy
4ma t.nlo T3

[C.12].

R

From [C.6] and [C.12], we see that radiative transfer will be an important
means of energy transfer in an optically thick (Boy(a,—oc0)—0) and/or high-
temperature medium, but not in an optically thin (Bog(a,—0)—00) medium, all

other parameters being finite.

At a boundary between two target components, we have a slightly different
energy balance to consider. If we assume that the boundary is material and
does not contribute to the balance of energy across it, the local balance of

energy across the boundary between layers I and J takes the form
[of +b{]/ =[af +b]] ¥ [C.13],

where ¥ is the “outward” normal unit vector to the interface. Using [C.1] and

the definition of hy given above, this takes on the ND form

. kAT . . . an’T? . . .

where Sk is the Stark number of layer Q, given by (see text)

kAT,

41ra,ax,3n,3¢75,3T,;1

Sk

Q [C.15],

which is a measure of conductive to radiative flux across a layer Xq thick with
effective temperature gradient AT/x, Estimates of the parameters in these
relations for the high-pressure states of the metallic DP, FL and dielectric SW

are given in the following table:
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Table C.1. Order-of-magnitude shock compressed/released-state parameters.

Parameter metal dielectric SI units
Pr 10 108 kg/m3
Con 108 108 J/kg'K
ket 10? 10! W/mK
T, 10* 103 K

AT, 10 10? K
D, 1 1

at >108 10 m~!

Xexp <10 1078 m

texp 107 107 s

Pe, <1 <108

Bo, 10 <10°

Sk, 10 108

t - STP values.

The quantities pg, cpr, Tpy AT, tep and n, are relatively well-known (i.e., to
within a factor of 2) through the impedance match and equilibrium thermo-
dynamic shock compression/release calculations discussed in the text. Most
uncertain of all material parameters constituting Bo, and Pe,, and so
Skp = Bog/Pey, are the thermal conductivity, k,, and the absorption coefficient,
ag, of the high-pressure state of each layer. For perfect crystalline nonmetals,

k ~ 1/T, while for metals, k ~ constant at high temperature, respectively
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(e.9., Berman, 1976; for minerals, see Roufosse & Klemens, 1974), implying that
the values of k in Table C.1 are upper bounds if these dependences are rela-
tively insensitive to pressure. If we assume that k for metals is dominated by
its electronic component, k,, we can use the Wiedemann-Franz-Lorenz (WFL)

relation ([5.7] in text) to estimate k from electrical resistance data, or some

investigated the change in electrical resistance of many statically-compressed
materials, including iron, but only at low pressure (10 GPa). Keeler (1971)
investigated the change in the electrical resistance of shock-compressed copper
and iron up to 140 GPa. He found that p, of shock-compressed Cu decreased
from =~ 16.7 to 5.6 n{)'m with pressure up to = 100 GPa; a datum at 140 GPa
implies that the resistivity of Cu reaches a minimum between 100 and 140 GPa
and then increases to =~ 0.83 n{2'm at 140 GPa. As for Fe, the data imply that
its electrical resistivity decreases from ~ 2.5 to 0.47 n{2-m between 13 and 140
GPa (above the a—e transition). In light of [5.7), these trends imply that the
thermal conductivities of shock-compressed Cu and Fe increase with shock pres-
sure, against the high-temperature expectation expressed above. Consequently,
we may assume with some basis that the STP value of k provides a lower

bound to the high P,T value of the metallic target components, kg.

The thermal conductivity of dielectric target components is dominated by
the lattice contribution, k,, at high pressure, we may estimate k from the lattice
thermal-conductivity model of Roufosse & Klemens (1974), who argue that the
acoustic branches of the phonon-spectrum dominate k,. Using this assumption,

they arrive at an expression for kp, te.,

VRSN o
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with
T, = n*/ Mavg
1 9l /6[37r2]5/3 kv
and
ro_ 1 Ma V¢3

— 01/632/3.7/3 42n1/3 7p2 ’

where n is the number of atoms in the unit cell, M, is the atomic mass, V4 is the
velocity of sound, kg is Boltzmann's constant, and a3 is the atomic volume, and
Y is the acoustic-phonon Grineisen’s parameter. This relation is consistent
with the k @ 1/T expectation at low pressure. However, if the effect of pressure
is to increase k, then k may change little from its STP value. Arguments in
favor of this are given by, e.g., Roufosse & Jeanloz (1983), who find that various
two-body interatomic force models appropriate for halides predict an increase in
k, with density and a decrease across polymorphic phase transitions with an
increase in coordination. We use [C.16], [C.17], the solid-state thermostatic
model presented in Appendix A, and the equilibrium shock-compression rela-
tions presented in the text to estimate high P,T values of k, for metals and kp
for dielectrics in our targets. These calculations, discussed in the text, are con-
sistent with assuming the STP value of k for metals and nonmetals is a lower

bound to the high P,T values of k for these materials.

As for the absorption coefficient, we expect the STP values given in Table
C.1, like those for k, to be lower bounds, since absorption in the optical band is
most likely to increase with pressure and temperature (e.g., Siegel & Howell,
1981). Only a few initially transparent materials, such as Al,O; (Bass et al,
1987), retain their original transparency upon shock compression to high pres-

sure (< 250 GPa).
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Note that the following comments for the FL apply to the DP as well.
From Table C.1 values, we expect Bo,<107/a, and Boy~10'%/a,, for the FL
and SW, respectively. Since we have no upper bounds on a, and a,, we cannot
really say that radiation will never be important within the FL and SW, but it
seems unlikely. What we can say is that if a,<<10” m™! and a,,<10'° m™!, radi-
ative transport should not contribute significantly to the energy balance within
the FL and SW (shocked window), respectively, on the time scale of the experi-
ments. Note that this bound for a, is probably underestimated, since we have
assumed a rather large value for T, in the DP or FL (Table C.1). As for con-
duction, we have, from Table C.1, Pe,<10'%? and Pe,<10'%x2, and this
implies that conduction will be significant over a length scale of <107%m in the
DP, FL and/or SW. On this basis, it is likely that conduction will contribute to
the energy balance in both the FL and SW on the time scale of the experiment
over a length scale equal to the thickness of the FL, since we expect k,, and
especially k., to increase with pressure and temperature (¢.e., during shock
compression). From all this, we believe that the values of Bo, and Pe, given in
Table C.1 are upper bounds to all relevant values of these parameters at higher
pressures and temperatures. In order to emphasize the uncertainty of kg, ay and
the governing length scales, x, and x,,, of the FL and SW, respectively, we write
[C.6] for the DP, FL and SW, and [C.13] for the interface, using the values for
the better constrained parameters from Table C.1, in the following forms (with

I-FL and J—SW):
k

3,0, - 10-14x—; ©,ii +107a, h) ; =Da,e,, [C.18]
F
k .
38, - 10*13X—V2V 6, + 10, h}, =Da,e,, [C.19]
w

and

2
O, ; Vo= t:;{x" O,V + IOG% h!v*
w F
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- 105-"i‘kﬁl b vf [C.20].
F

For a given layer to be, in effect, spatially infinite with respect to a given proc-
ess (i.e., the boundaries have no eflect on the process), its length scale must be
at least an order-of-magnitude less than the layer thickness. The conductive
length scale is Xp,,=+/Kgtexp, While that for radiation is x.,,=a,1. The STP
values of these length scales, given in Table C.1, when compared to x, of each
layer, imply that both the DP and SW are infinite with respect to conduction,
but that the SW is finite, while the DP is infinite, with respect to radiation.
This implies that any conduction in the DP and SW, and radiative transfer in
the DP, will be quite localized on the time scale of the experiments, but radia-
tion will pass essentially unhindered through the SW for a,<x-1~10°m™. In
this case, only the interface, shock front and USW free surface will significantly
affect the radiation intensity. We consider the effect on radiation of propaga-
tion across the interface, SW, shock front, USW and its free surface in Appen-
dix V. By the same reasoning, we conclude that any conduction effects on
energy transport affecting the observed radiation field will be confined to a
region near the FL-SW interface on the order of the FL thickness. On this
length scale, heterogeneous heating at the DP-FL interface and/or phase
changes between the DP-FL and FL-SW interfaces may also contribute to the
temperature field in the neighborhood of the FL-SW interface. In light of all
this, we assume that x, and x,, are given by the corresponding values of x,, for

the DP and SW. Putting these into [C.18]-[C.19] and reducing them, we obtain

88, - 10%, ©,; + 107a, b} ; =Da, e, [C.21),
88, - 107k, 8,,;; = Da, e, [C.22],

and
8,V = Kw Oy iV + 1082 hiyi [C.23].

kF kF
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where we have eliminated the radiative terms for the SW in [C.22] and [C.23],
since a,, would have to be on the order of 10° m™! before radiative transfer is
important in the shocked (or unshocked) TW and across the FL-SW interface,
regardless of the value of x,. If a, is much larger (e.g., 108m™) and k, much
smaller (e.g., 10) than their values given in Table C.1, radiative transfer could
influence energy transport in the DP, and across the FL-SW interface. How-
ever, for lack of better information, we adopt the values in Table C.1, thereby
assuming that the thermal conductivity of the DP, FL and SW, and the absorp-
tion coefficient of the DP and FL, are effectively unaffected by

compression/release. In this case, [C.21]-[C.22] become

8,8, — Pe, ', ;; =Da,e,, [C.24]
88, - Pe, 10, ; = Da,e,, [C.25]
and
kAT :
O, = f’:—ﬁﬁ o, [C.26)].

where {Pe,, Pe,}~1 (with x,~x,,107%) and

kb ToXe 0.1

kATex,,
In this case, radiative transfer does not contribute substantially to energy tran-
sport in any part of the DP-TW system. So, we are left to investigate the
effects of conduction at the interface through relations [C.24]-[C.26] in the next
section, and effects of radiative transport through the FL-SW interface, SW,
shock front, USW and and its free surface by way of a model based on [C.3], in
Appendix E.
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§12. Appendix D: Conductive Transport in the Target

The scaling arguments presented in Appendix C provide some idea of con-
ditions under which conduction and/or radiation may be an important means of
energy transport in the interior of each layer of the target, and across the boun-
daries between the layers. With some basis for believing that we are in the
range of conditions where conduction dominates radiation as a means of energy
transport, we decouple these processes and treat them separately. In this sec-
tion, we establish a simple conduction model for our target geometry. We
adopt the framework of Grover and Urtiew (1974), who assumed that 1)
significant conduction takes place only along the direction of shock-propagation
(t.e., is one-dimensional), and 2) shock-compression transfers energy to the
material much faster than it can be conducted away. This last assumption
allows us to treat the DP and TW as thermal half-spaces. Choosing the thick-
ness of the FL, d, as the governing length scale, we have, from [AIIL.25] and
[AIIL.26], the ND energy balance for the DP ( —co<é<-1), FL (-1 <x<0) or
TW (0<£<00):

O, (&) — Pe, 8,8,(6,7) = —Pe,Dase,(£7) , >0 [D.1],

where A is the released DP or FL, or the shocked TW. We use the Laplace
transform (LT) technique (e.g., Carslaw and Jaeger, 1959) to solve [D.1] for each
layer. Applying this transform to [D.1], we obtain

0A,€€ - [qA(s)]2 oA = —¢A(€’s) [D'2]’
where §(¢;s) is the LT of ©(&,7), s is the LT variable, q,(s)=vPe,s, and
#.(€s) = Pe,[Dae,(€5) + 6,(£,0)] [D.3],

which contains the ND initial conditions ©,(£,0). The general solution of [D] is
given by

0,(&s) = b,(s)eW + c,(s)ef + 0,,(€,5) [D.4]
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with

1 € o —qa(¢-
Oul5) = 5= [ [0 - eals-9] g, (5)de
being the particular solution of [D.2]. The boundary conditions include the

requirements that ©,(£,7) and ©(£,7) and ©,(&,7) remain bounded as £é—-co

and {—+o00, respectively. Consequently, we have

1 0
Cp = K foo e (¢,s)d¢

)
=)
<"

1 e—a
T emte— “’g

Using these and writing [D.4] for each layer, we have

O(€,5) = b + 6, (£s) , -00 < € < -1 [D.5)
0n(€,5) = by(s)e ™ + cyfs)e ¥ + 6, (6s) , -1 < €< 0 [D.6]

and
0ud6s) = cu™ + 0,(€5) , 0< €< o0 [D.7].

Now 6, and 6,,, are given by

¢ 0
Op(Er5) = ﬁ e®l-8p (¢,s)d¢ + fe e &g (5)d¢ [D.8]

and

Oun(&ss) = 5(-11— f €e‘q‘”(f‘§)¢w(g,s)dg+ j; ooe‘q“'(f‘f)cﬁw(g,s)dg [D.9].

Y 0
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Relations [D.5-[D.7] contain 4 unknowns, by, b, and c,, and c,, requiring us to
specify 4 more boundary conditions. We obtain these by assuming the usual

continuity of energy flux and temperature across each interface in the target. In

the transform domain, these are given by

~kp®;, Oef(-1,5) = ~k, @, Iby(~1,5) [D.10]
%TD+<I>D0( ,s)_—T + @, 8,(~1,5) D.11]
k@, 90,(05) = —k,, B, DH,(0.5) D.12]
and
=T, + @, 6,05) = 1T, + 8, 0,(05) D.13].

Putting [D.6]-[D.9] into [D.10}-[D.13], we obtain

O™ —eF e b;, b,
{ e _eF e¥F 0 b'Ir by D.14
0 1 -1 owf|c, | |bs [D-14]
0 1 1 _1 Lc‘:v b4
with
b= 220 [t 6 ooy
29, Yo >
by= LAT, - o2 f—le%“*‘)é(gs)dg
2 s FD 2% Yoo D\oy
b, = 2 f °[e%f+ e %] 4.(s,s)d¢ + TvaPw f °°e"‘“¢w(§8)d§
3 2qF _1 m> 2qw 0 ’
1 oo
b, = LA -] gyl)ds + ot [ Tt g (os)d
s 2q,, Yo
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and b;} = ¢ b, b’F = P;b,, etc.. If the coefficient matrix is nonsingular, i.e.,

D(s) = —(1 + ou)(1 + au,){ e _y_y e{d+ qF)} # 0

where
o { KuPuCow }“2 o { Knfoon }‘é
b kaFCO'F ’ a kaFCO'F ’
and
b = (001) = (ows1)
T (otl) T T (oyetl) ]

the system [D.14] has a unique solution. Noting that

1 eI
D(s) (14006)(14+0yp) [1-Vpgl e 2]

— edo = m —qe(2m+1)
(o)1 Fou) o, Vo)™ ¢

for =1 < ylge™®¥ < 1, we invert the coefficient matrix in [D.14] to obtain

Vle
{b/; = 1 i (Voplpg)™ e~ 2m+1) [D.15]
Cr (1+om)(1+ow) mzo "
Cw
a; a1g 2eTP 20 ze%P b,
o | 0w (Oul)ow  (140w)  (1+om)oe® | | b2
(1+0we)0re ~(1+0we)re (1-0pe)e™F (1-0e)ovee™® | | bs
2 201 834 244 b,
with

a11 = (140y)[e%F - v e F|e®
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819 = (140,)[e¥F + v, e F|ed
34 = (14+0y)[e® — v e ¥
and
agy = —(140)[e¥ + v e % .

Expanding these out and substituting them into [D.5]-[D.7], we obtain the solu-
tions in the LT domain. We then transform these back to the time domain
using the convolution theorem and the following inverse transform (e.g.,

Carslaw and Jaeger, 1959):

ok PN
L-1{ s(§+1)/2 } = (4% iPerfc [ ;‘;ﬂ

with Re{z}>0. In this relation, i®rfc(z) is the complementary error function of

n==-1,0,1,...

order n, with

-22

i-lerfe(z) = 3

2
w2
i%rfc(z)=-erfc(z), and

2n i%erfe(z) = i®2erfc(z) — 2z i*lerfe(z) .

Consequently, the temperature field for —co < € < -1, 7 > 0, i.e., the DP, is
given by

T(6n) = To+ @, [ lf0 " GyEmn) Solcn)duds

-0

AT
* v 2, ool lzmosnl1+)e)
__._AT“’ < Dy, erfc m K w

+ e mz=30 (VoeVwe) ™ Ve erfe{ [2(m+1 ) (1+€)|w, }
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+ [ [ TP o) dlsr-ududs + [ [ Wil dusu)auds

-1 0

o

200 AT g 00 m orge - . )
* Tromiton) 2, Cor)™ erfe{[(2m-+1)1-w(1+ €} D.16].

In this relation, we have defined £, = Vi, /k, w, = VPe /4,
1 1 B o
Goles) =5 { =] 8 e,

mPeyr m—0

e-{(2mtrelE-lwr)® 4 ) e~{[2m-rm(E+o+2)ur)?
— pyge B+ k(e 2)wr)® _ ), SR (G LRV Gl S

e~ {{2m+rm(e-E)lwr}® | Yy ¢ {[2m-rppls+E+2)|wr}?
— vy URmH 1w+ E+2)wp)® _ Vpplge™ RO DHRee-Olor}® e

Ful€ss) = oty | = }% 3 o)™

(14oy) U mPer ) 2,

. {e-{[(2m+1)+s—~m(l+€)]wp}’_um e-{[(2m+l)—$—xm(1+€)lwr}2} ,

%

P 1 3 m o~{[(2m+ 1)+ Kpws—rre(14+ &)l )?
Wiltss) = s { =) & sl e ,

m=0

and kpy = VKg/k,. The temperature field for -1 < ¢ < 0, 7>0, i.e. the FL, is
given by

T(6n) =T, + [ [ "D,(6sr-u) dfsuuds

0T, m
+ o) mz=;o (Vo)™ erfe{[(2m+1)+EJw,}
aDFAT

s 8 el erte((zmt1)-glu)
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+ & f f Ge(&,6m1) ¢(67-p)duds

f°°f We(&:67-4) d{gm)duds

OwA T 2 m
oy L Gl erte{lzm-gluy}

- %‘*."f_é‘.i_‘;"" i (Voetwe) Ve erfe{[2(m+1)+€]w,}

m==0

with

D (§,67)

%
Py, 1 X m
(1+0,) { mPe,r } mgo (Voetue)
A etlemesmragon e {lm1)-Eomm )

Glesn) = 1 { }% 5 (st

mPe.r

e'{[ 2m+(€'f)]wl?}2 — Vyp e_{[ 2m‘(€+§)]“’l?}2
e (e on? 1y, o AmEhn | o

e~{[ 2Zm+(-€)|wp)? —,p e~ ([ 2m{e+E)Jwe}?
- ye{ Am+1)He+Olwp)” 4 Veglge ([ Am+IH- O} e e |

W (&67) = a +q)w) { L }% 5 (Vesoa)

mPe,r n—0

- {ertlm-ersrusont _ e Ermnintt]

Lastly, for 0 < £ < 00, 7> 0, 1.¢., the TW, we obtain
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T(&) = T+ [ Dulsu) bulsu)duds

20eAT 0 m
* (1 + o)1 + Ouyp) 2, (Vortr) ertellom ey}

m=0

+ [lo.l(; ' FW(&55,7-1 )5l m—p)duds

+ 3, fo °°fo " Gu(E,6mm) bl e )duds

AT . o
Y3 (voghe)erfe{[2m+xp, Elwe}

m=0

AT,

o § (Voglwe) " Vee erfe{[2(m+1)+Kplwp} [D.18},

m=0

+
with

Dy (&¢7) =

20,9, { 1 }%
(1 + o)1 +0yg) | 7Peyr
o0
© S (V)™ € (2m+ oo 1) e}

m=0

b

Fulésn) = o | =)

(1 4 oyp) | 7Pe,r

. § (Vmep)m{ e~ {[2m—strrwilwr}” _ Ume—{[2(m+1)+§+'cwwf]“’?}2}

m==0

1 % x
,rpewr} Y (V)™

m=0

Gulesn) = 3 {

e~ {(2m+xpw(é-Olwp}® V,p e 2B HErW(Et)lwr)?
- yme‘{['-’(m+1)+'°rvv(€+€)]wr}2 - ymywpe‘{[2(m+l)+’°l‘\~(€—§)]wl'}2 , O<¢e< €,

e~ {lmm Oty o2+ ipuls Ol
— yme_{[Q(m+1)+'cFVv(§+f)]wF}2 - mewe_{[2(m+1)+’cF‘W(§—€)]“’F}2 , €<¢<o0o,
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Each of the source terms now has the form

¢A(6;7) = Pe,[Daje,(&,7) + O(£,0)8(7)] [D.19],
where §(7) is the Dirac delta-function.

As discussed in the text, we assume that compression/release processes in

the target establish an initial (t=0) temperature profile in the DP-FL-TW sys-

tem of the form

T, -00<x<—(6,+d)
T+AT, —(f+d)<x<-d
T+AT, -d<x<-(d-6,)

= \ - m 1
T =1 "1, 7 _(d-g)<x<—b, (D-20]
T+AT,, —be<x<0
Tw 0<x<oo

In this relation, d is the FL thickness, T, and T, are the temperatures of the DP
and FL, respectively, established by direct release from the shock-compressed
state to the pressure of the shock-compressed TW, and &, AT, and AT, are
the temperatures reflecting some degree of reshock heating in layers of thickness
65 6 and &, respectively, in the DP and FL at the DP-FL interface, and in
the FL at the FL-TW interface, respectively. Substituting these into the source

terms, ¢,, we have

€)= Pey{ Do) + [h(e+1489) - W+ A ) oy
6E7) = PeDae,(€7) + Peylh(E+1) - h(EH1-8, )
+ Pey[h(E+5,5) - B(E] [D.22]

and

$ul&,7) = Pe,Dayey(£,7) [D.23],
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where h(x) is the unit-step function, and &=di/d. Using [D.21], the tempera-
ture in the DP (-co<é<-1, 7>0) is given by

T(&7) = Tp + [g5(6n-(14+8).6) + g (67,6-1)] AT, + a(6,7) ATy,
+ £(67-1,-1 + &) ATy, + £(€,7,~8pp0) AT, + b(€,7) A [D.24],
with
BE(Erab) =+ 2 3 (vtie)Perfe{[2mrp(a-eu}

m=0
00

T -;- Y. (Vo)™ erfe{[2m+r(b-€)w,}

m=0

(VeeVwe) Ve erfe{[2m—Kp(2+E+a)]w,}

|
N |
H
I M8

[+

M8

+

(Veelwe) Ve erfe{[2m-k (2+ §+b)|we}

S L S
B
I
o

+
(8 imig

(Voelur) Ve erfe{ [2(m+1)-rp(2+E+a)|wp }

|
2| =

B
0
o

(Vo)™ Vg erfe{[2(m+1)-kpm(2+E+b)wy }

H.
|
M8

(Vo)™ terfe{[2(m+ 1)k (2~ €)|we}

.H
|~
B
[
o

(ymyw)m"'lerfc { [2(m+1 ):t’cm(b‘f)]wr}

i 08

o

(&) =

. +lam) ijo (Voptup)Cerfe{[2m—k (14 €)|w, }

1
+————
(1 + o)

fo(€,7ma,b) =

3 (Voeun)™tigerte{ [2(m+1) k(14 )i}

m=0

TroD L, GarwnPerte{[2m+1 arm(1+ 6o}

- T - go (Vortur)Perfe{ [(2m+1)+b—rr(1+ )i, }
1
* (1 + o)

5 (et e ertefl(2m+1) a1+ €))

m=0
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1
T ton) ,,?_30 (Veeue)™ vw{effc{[(2m+1ra~~m(l+€>lwx-}
20,

bol67) = Ty o Gt erfe{[(2met 1) p(1+E)key}

m==0

The function gZ(,r,a,b) comes from the integration of the second term on the
right-hand side of [D.16] using the source term from [D.21]; a and b are the
lower and upper limits of the spatial integration, respectively. We get g from
Z by using the upper signs in each term having both + and - signs, while g; is

given by the lower signs in each term.
The temperature in the FL (-1<¢<0, 7>0), using [D.22], becomes
T(67) = T, + dy(£7-(1 + 6,)-1) AT, + a(€7) AT

+ %e(67) ATy + T(€,7) ATy + by(6,7) AT, [D.25),
with
d(§ma,b) = Tl—:ﬁ mi‘o (um,uw)merfc{{(2m+l)+£—-nm(1+b)]wF}
(—1_1?3 mgo (Voetwe)Perfe{[(2m+1)+ 6, (1+a)w,}
T I Cot)rngerte{[2m+1)-€-r(1+5)Jr)
T D CatmPrerte{[mer 1)1l
a(§,7) = -(_+§ mZ_JO (Veele)™ { erfe{{(2m+1)+€Jw,} ~ werfc{[(2m+1%€lwp}}
g;(fs""“lyf) + g;*(&','r,f,—l + 6n>) y §< -1+ 5111) ’
bl&rr) = { g(&n-1,-1 +6,_), €>-1+6_,
(E ) — { g:(&T’—&mO) ’ 6 S _5pw
7] = g;(E’Ta—épw’&) + g:(ffrvf’o) ’ E 2 —6p'w ’
gH(Emab) == 7 3 (b erle{[2m(a-E)lu,}
m=0

T -;— § (Veetwe)™ erfe{[2m+(b—€)|w,}

m=0
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+
0o |~

(18 i[_\qg

(Ve Vg exfe{[2m—(E-+a)]op}

(Veesg) Vi erfe{[2m—~(€+b)Jw,}

B
I
o

8
i
o

08

(Vmer)me erfc{[2(m+1 )+(§+a’)]wF}

8

+ = Y (Vo) Ve erfe{[2(m+1)+(€+D)|wp}

m=0

FL P (o)™ erfe{[2(m+ 1R (2w}

m=0

il N

£ 2 5 (arnllerte{[2(m+ R (b-E)w,}

m==0

Z (VeeVor)™ {erfc{[Zm——E]wF} - umerfc{[2(m+1)+ﬁ]wF}} .

be(é,7) = e UWF) P2

Lastly, the temperature in the TW (0<é< o0, 7>0), using [D.22], is given by
T(&7) = Tw + dWEm-(1+6)-1)AT, + a (DA + L(67-1,-1+6,) AT,

+ fW(&-6p0)A T, + b (&, 7)AT,, [D.26],
with

(1+ j;(T+aw) i_..jo Cert)® exfe{[Zm 1)+ en e}

— 5 ()™ erfe{2mt g}

(1+ m=0

a &) =

b(é7) =

o0

t 5o mgo (VeeVe)™ Ve efe{[2(m+1)+K €l }

d(&7,a,b) = (1+a,:)](>;+aw,) méoerfc{[(2m+1)+fcw,§—lcm(l+b)]wF}

(1+an3z;+aw,) Z_}oerfc{[(2m+1)+nrwg_,cm(1+a)]wp}

(1+ ) mz_joerfc{[2m+rc,,w£—b]wp}

e +0wp) mgoerf c{[2m+KpE-a]we}

fw(&fr’a’ )
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+ T ??o”m erfe{[2(m+1)+xp,E+blu,}

1

- m mgoum erfc{[2(m+1)+k,E+a]w,} ,

These last 3 sets of expressions are those used in the text for the temperature of

DP, FL, and TW as a function of distance away from the FL-TW interface and

time.

§13. Appendix E: Radiative Transport Model

As discussed briefly in the text, radiation from sources at the interface
and/or the shocked TW may be affected by radiative transfer through the
shocked TW, shock front, unshocked TW and its free surface. In general, radia-
tion sources include 1) the FL at the interface, 2) gas or other trapped material
at the interface and/or 3) the shocked TW. The FL is generally a metal (i.e.,
an opaque material), while the TW is generally an oxide, halide or silicate.
Many of these latter materials are of natural origin, possessing color and con-
taining inclusions of various sizes, some of which are potential scatterers (e.g.,
apparent Rayleigh scattering in CaO: Boslough et al., 1984). These possibilities
motivate us to formulate a model from [AIIL.3] and the geometry of the target
of sufficient generality to deal with emission, absorption and/or isotropic
scattering in the shocked and/or unshocked TW. Note that in writing [ATIL.3],
we have already assumed isotropic scattering. For tractability, we must accept
this as a limitation of the model. We have no a prior: reason, of course, to

expect this to be true in shocked or unshocked TW containing scatterers.

Since our experiments are calibrated, we need worry only about the
differences between calibration and experimental configurations, which include
radiation sources, and the eflects of the 1) shocked TW, 2) shock front, 3)

unshocked TW and 4) TW free surface on the on the source radiation. In what
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follows, the subscripts “INT,” “SF,” “USW” and “FS” will stand for the inter-
face, shock front, unshocked TW and its free surface, respectively. For simplic-
ity, we assume the target may be approximated optically as a set of parallel
plane layers. In this representation, the temperature and material properties of
the FL, shock and unshocked TW are assumed to vary at most only along the
direction of shock propagation, ¥; t.e., the layers are of infinite extent in ¥ and
Z. Further, we assume that iy is axisymmetric about S; in this case, iy, depends
only on s= |¥| and the angle between § and ¥, which we designate ¢, so that
iy =i, (s,#). Introducing the extinction coefficient, Ky=ay+0,, the differential
opacity, dey=K,(s)ds, and the albedo for scattering, 0, =0, /K,, into [ATTL3],
with dr==dx/cos¢, the radiation intensity in all directions forward = +)ina

plane layer is given by the solution of (e.g., Siegel and Howell, 1981)

1O, ixt (ko mt) + ixt (K1)

o ! Q)\ 1 o % . — * *
= (-00)5um2) + 32 T (o) + il E.1],

and

~p0 g ixt (rx,—1t) + isF(rx,~t)

o ! Q)\ l . * . o * *
= (1-0, Jise(ky) + —2—°fo i (snots®) + ix(Rympt)lda® [E2],
In these relations, 3, =08/0x,, u=| cosé |,

ra(x) = f0 Ky (6)de E.3]

is now a function of x, kyq=k,(d), and d is the layer thickness. Radiative

transport in each layer of our target is then governed by [E.1] and [E.2]. Given
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a target geometry like that of Figures 1 and 2, we assume that observed radia-
tion will be dominated by radiation from the target of nearly normal incidence
(1.e., u=1). This is the fundamental simplifying assumption of the radiative

transport model used in our work. Mathematically we express it in the form
(R tp) = bE(xy) 6(1-4) [E.4],

where §(x) is Dirac’s delta-function. In effect, this assumption imposes a very
special averaging on the optical properties of the model, i.e., that model proper-
ties are dominated by radiation incident perpendicular to the layering of the

target. Putting [E.4] into [E.1] and [E.2], we obtain

, 93VN

Ot (k3) + ixF(ky) = (1-2yo)ine(ky) + —Q'L[ix+(“x)+i{ (k3] [E.5],
) Do

=0,ix(ky) + ix(ky) = (1-Qyo)ine(ky) + —;—[ifr('cx)"‘ix_ N) [E.8].

Now we define
I)‘:t = i)‘+:ti{ .

Substituting I" and L}, into [E.5] and [E.6], adding and subtracting them, we

obtain
0I5 + I = 280i5.(k) + Dy lyt [E.7],
and
Bl + Iy =0 E.8]

with ﬂxE\/il—oni- Eliminating Iy from these expressions, we obtain a

differential equation for I}, i.e.,
ORLT - BILE = -2B%iy(xy) [E.9].

For (,,7#{1,{(,)}, which is the case if we assume that 1) 2,70 and 2) a, and

07%f(,) in each layer of our model, the general solution of [E.9] is given by
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It (xy) = CeP™ 4 DePe 4 ﬂxfxxsinh[ﬂx(nf-fc)\)]ige(;c;)dfc; [E.10].
0

Then from [E.8], we have

IT(ky) = -0, L

= -5CeP™ + B De P 4 p2 fo " cosh By (ky—rx )iy (1e,")ds? [E.11].
From [E.10], [E.11] and the definitions of I, we then obtain
o L7 \ 1 fr L =0
e = i £ L]
_ 1 CePrer 1 By 4 s+
= E(Wﬁx) em™ 4+ —2-(1:tﬁx)De + ixp(ky) [E.12],

with

ig500n) = s [ 1128 - (12.8,)6 PSS ()

From [E.12], we have the following conditions at the boundaries of the layer for

backward and forward propagating radiation:
.o 1 1
i(0) = S(1+4)C + 5 (1-A)D,
s — — l C Bwera , 1 1-4.)D —Oakrd 4 s~
iX(#xa) = 5 (14+5,)Ce™™ + 7 (1-A\)De + ixp(kna)
- 1 1
ix"(0) = 2 (I-A)C + (14D,
and

. 1 1 - .
i (k) = E(l—ﬂ)\)Ceﬁ"c“ + '5(1+ﬂx)De At . ixp(kaa) -

We need only two of these to find C and D; for reasons apparent later, we
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choose the second and third relations. Solving these for C and D, and substitut-

ing the resulting expressions for C and D into the first and fourth relations, we

obtain
A2\ .+ . - -
i7(0) = 2(1-5y )Smh[ﬁx'“xgllgm(:) + 4ﬁx[1; (_'Z:x)d W) E.13)
[(148,)%™™ — (1-8y 2™
and
.+ A . - e
() = 45)ix"(0) + 2(1-B))sinh[By ey gl [ix(kna) — Txp(Frg)] T i)

[(1 + ﬂ)‘)2eﬁx'€xd _ (1_ ﬂ)\)2e—ﬂxf€xd]

—

R 14])
.14,

With gy,=p,,, and K\xd=K)gs these relations apply to the shocked TW; with
Br=Pruswr Frd=Fyrgsrg 2and iE(kyq)=0 (no sources), they apply to the
unshocked TW.

Next, we assume that 1) the opacity of the FL is sufficiently large so that
any radiation observed from it originates near the interface (the diffusion limit
for radiative transport), and 2) all boundaries are optically smooth, so that radi-
ation incident on these boundaries is refracted and reflected according Fresnel’s
laws (e.g., Siegel and Howell, 1981). Basically, by doing this, we neglect any
scattering properties these boundaries may have. Using [E.13]-[E.14], and
assigning each boundary of our target an intrinsic normal spectral reflectivity,

ry, given by (e.g., Siegel and Howell, 1981)

_ (myamyp)° + (Wia—wys)®
(myutnyp) + (Waatwys)?

I'\aB

for normal incidence on the boundary between layers A and B possessing com-
plex indices of refraction ny,+iw,, and ny +¢wy, (Where wyeay), respectively,
we may construct the boundary and layer conditions for the model. At the

interface (x=ky=20), radiation traveling forward into the shocked TW, iy, (0),
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is composed of radiation emerging at the shocked-TW-side of the interface from
the FL and/or gas, Syt (0), plus that component of the backward-traveling

radiation (iy_,(0)) reflected off the interface back into the forward direction, i.e.,

This is the boundary condition at the interface. From [E.13] and [E.14], we

have conditions for forward and backward-traveling radiation in the shocked
TW (0<x<xg 0< Ky <Ky =Ky (Xg)):

Baw(0) = €1 ix5,(0) + ¢ ix (rrg) + Si(krg) [E.16]

haw(Fag) = €2 155 (0) + ¢y i (kng) + S5 (kag) [E.17].

At the shock front (x=xg, £\ _=#,(xs)), we have radiation transmission in both

directions and reflection from both of its sides, i.e.,
Bawlfag) = €3 ixg(frg) + D xh,(F2g) [E.18]
ew(®aa) = € Ino(fag) + Daar Ingu(Frg) [E.19]
Again using [E.13] and [E.14], the conditions in the unshocked window

(e <X<Xgg, Ky, <Ky <Ky =Ky (Xg)) are given by (with i)iesw(ﬁ)\)Eo: t.e., NO

emission from the unshocked window)
D wFrg) = C5 Ixtg(ag) + C6 ing (f,0) [E.20]
Irew(Fres) = 6 Ixtgw(Bag) + €5 I (Fn,o) [E.21].

Lastly, at the unshocked window free surface (x=x, Kyes=5x(Xss)), radiation

traveling back into the unshocked window, w15 equal to that com-

ponent of the forward-traveling radiation incident at the free surface, SN W
(x=X{s, Ky, =FK(X¢s)) reflected into the window, i.e.,
en(ags) = Taes Ino(Fnge) [E.22].

The coeflicients and source terms in these relations are given by
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2(1~ﬂ>?sw)5inh[ﬁ>\sw'°§,]
[(1+8,g)%Pews _ (1-8, 2o Provors]

¢

4:3>\sw
[(1+:3Xsw)2eﬂww - (l_ﬂ)\sw){ze_ﬁxswms“] ,

C3 = (l“r)\sr) =04,

2(1-Brew?)sinh[By ek )

T OB T (1 PP ]
g = 4Pysw
(14 By ?ePoles o) _ (1_g, 12 Prsmesrrg))
Sxpa(0) = (1-rype) 1% (0)
Si(krg) = row

[(1+ﬂxsw)2eﬂ)sw‘cxsp _ (l—ﬂxw)%-ﬂ’sw'cxsr-‘] lxswp(’c)\g) ’
and

2(1-Brgu2)sinh [By gy ] .
[(1+5)‘5w)2eﬁxswﬂxg_ (l—ﬂ)‘ ) _ﬂXSW‘CX] )‘swp Kag) -

Sxow(mag) = ixt, (ag) -

Relations [E.15]-[E.22] constitute 8 equations in 8 unknowns. We are particu-
larly interested in calculating i)\"t’sw(fc)\ns), since the radiation escaping the target
destined for detection is then given by

Inobs(®agg) = (1-Typs) It (%2,0) [E.23].

The system [E.15]-[E.22] may be cast into the following matrix form
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e 1 0 0 0 0 0 o0 )| X0 o 0)
1 - - 0 0 0 0 o || b5 S_XM
;o ¢, 1 0 0 0 o0 ||infog x:w('“xs.-)
J O 0 1 g e 0 0 0 |[itin,) stw(()’“xs)
0 0 0 —3 e 1 0 O W (W _ 0
0 0O 0 o 1 -¢c5 ¢ O iktsw(’cksr) 0
0 0O 0 O 0 -cg -5 1 i st(,c)\ys) 0
L 0 0 0 0 0 0 1 -, ~ 0

[E.24].

In matrix notation, this is [A]{i}={d}, where [A] is a reflectivity-transmissivity
matrix, {i} is a vector of the forward and backward traveling radiation intensi-
ties at the boundaries, and {d} is a radiation source vector. Decomposing (A]
into upper and lower bidiagonal matrices, [A;] and [Ay], respectively, we find
the solution of [Ay]{v}={d} and use this to solve {i}=[Ay]}{v}. Solving this
system gives us an expression for iy’ _ (k) ), which we substitute into [E.22] to
obtain

Inobs(Kagg) = T [Sapn(0) + Sy (Krg)] [E.25],

In this relation, we have
Iy = EXN(1-ng)(1-rams)cs] »
Ex = [(1-rxpe1)(1-¢1Mg) = Papa€s Toar] [(1-Tygr€5)(1-C5Tngs) — FaaeCType)
— [(A-rypni)e; + Fapaes](1-yg)[(1-csaps)es + cdrag)

is the effective transmissivity of the shocked TW, shock front, unshocked TW

and its free surface,

Syolrg) = f0 A (g Einen, (E)E
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A.)\(K?xg‘.’f) = %ﬂ)\sw[(l_r)\mcl)(l'*'ﬂ)\sw) - [01+(022-012)r>‘m](l—ﬂ)\sw)]eﬂ"sw(s-'“g)

1 - —
- Eﬂ)\SW[(l_r)\Mcl)(l_ﬂ)\sw) - [Cl+(022—012)r)‘m](1+ﬂ)\w)]e Prowl € K)SF)
is the intensity of sources in the shocked TW along «,, and

Siar(0) = co(1-rapn)it, (0)

is the combined effective intensity of all interface sources. Relation [E.25] is the
principal result of this appendix, and constitutes the simplest model incorporat-
ing scattering, absorption and multiple reflections that we can derive for radia-
tive transport in the target. As it stands, [E.25] is sufficiently general for com-
parison with observations from a number of different radiation experiments. At
this point, however, our main interest is in the interface experiments discussed

in the text, so we now specialize [E.25] to this purpose.

For cases where there is apparently no scattering in the shocked TW, and
none in the unshocked TW, we may set Prsw=Dbrww=1 in [E.25]; in this case,

¢;=c5;=0 and

Co=T\, =€, cg=1,_ = e {Fres o) [E.26]
Eyx=(1- rx,srf‘swr)‘s,) - Tfs‘N[rMs(l - 2ng)cd + S | - [E.27]

and
Ay (Krg€) = r)‘sw[ef + Fypere 9 (E.28].

From [E.27], we note that, in general, neglect of multiple reflections when
{ry, m}—1 is clearly incorrect and can lead to underestimate of the source
intensity by the model. However, for the experiments of interest here, we do

have ry,~O0. In this case,

E)‘()"t) =>1- (ans+err)rXsp' - r)‘rs(l—2r>\sr)r)\mr =1- O(P2) [E'29]
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and multiple reflections are, to first order, negligible. Now if we assume each
region of the dynamic target optical geometry possesses a distinct extinction

coefficient, and that, in each layer of the target, optical properties are homo-

geneous, we have

Kkswo‘) , 0<X<Xs;. s
K\x) = { K\ ), xg<x<xg, (E.30]
Kaen) s xd<x<d,

where xg is the position of the shock-front in the SW, x4 its position in the

USW, and xg—xg is the shock-front thickness. Putting this into [E.10], we have

5 TN

EaglMX) = Kyl x4 (E.31]
and
FaegMX) = Ky (N) xg + Ky (M) (x—xg) + Kysw®) (dxg)  [E.32).

For steady shock-wave propagation (1.e., constant U), x and t are not indepen-

dent, and we may write

Xg(t) = (u-v)t [E.33]
and
Xg (t) = (u=v*)t [E.34],

where u is the speed of displacement of the shock front, and v~ and v* are the
material velocities behind and in front of the shock front (see General Introduc-

tion). Putting these in, we have
BapsMit) = Ky (\) (u-v7)t + Kyng) (v=v*)t + Kyew) [d~(u-v*)t] [E.35].
Defining

K (\) = Ky (M) (077) by E.36]

KX =Ky (0) (v-v*) teyy, [E.37]
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and

K)fww()\) = Ky oo*) d [E.38]
as nondimensional extinction coeflicients, and setting vt=0, we have
prs()‘vt’) = KX‘SW()‘) t'/t’exp + K;g(x) t'/texp + K)\‘ww(k) (l—t/texp) [E'39]'

If we treat the shock front as a 2-D boundary, rather than a thin layer, KXSF—>0.

In this case, we have

FrgOt) = Ko (M) t/teyp [E.40]
and
’c)\,,s(k’t) = 'CXS,()‘vt) + K)\‘g(k) t/texp + K)\‘usw()‘) (l_texp) [E'41]'

[E.40] and [E.41] are the expression we use in [E.26] and the text. Lastly, if we
assume that sources in the SW are distributed uniformly, iklesw(f) is independent

of x, t.e., spatially uniform, and from [E.22], this implies

Siafag) = fo ANy e (E)E

= (I~ )1+ g (N, Ts) [E.42],

assuming that i)iesw is given by the Planck function. Putting these results into
[E.25], we obtain, with S,~1
Ixobs(Ast) = T [Sy,(0) + Sy (%3] [E.43]
with
Iy = (I-ne)ng (1)

and

Sr0{0) = Mg (1-Trne) I[N Tl t)]
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which is the expression we use in the text. The Hugoniot temperature SW, Touws
is homogeneous, uniform, and constant since we assume a uniform distribution
of SW sources. The interface temperature, Tp{t), however, is a function of

time, or constant, in the context of the conduction model discussed in Appendix

D.
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Abstract

Shock-compressed MgO radiates thermally at temperatures between 2900
and 3700 K in the 170-200 GPa pressure range. A simple energy-transport
model of the shocked-MgO targets allows us to distinguish between different
shock-induced radiation sources in these targets and estimate spectral
absorption-coefficients, By fOr shocked MgO (e.g., at 203 GPa, a,,,,~6300,
7500, 4200 and 3800 m™!, at 450, 600, 750 and 900 nm, respectively). The
experimentally inferred temperatures of the shock-compressed states of MgO are
consistent with temperatures calculated for MgO assuming that 1) it deforms as
an elastic fluid, 2) it has a Dulong-Petit value for specific heat at constant
volume in its shocked state, 3) it undergoes no phase transformation below 200
GPa, and 4) the product of the equilibrium thermodynamic Gruneisen’s parame-

ter, v, and the mass density, p, is constant and equal to 4729.6 kg/m?.

§1. Introduction

The mechanical response of materials to high pressure has traditionally
been investigated by shock-wave or static-compression experiments that con-
strain, among other things, the pressure-density "equation-of-state” behavior of
these materials. As first demonstrated by Soviet workers (summarized by
Kormer, 1968), optical radiation from the shock-compressed state of certain
transparent materials has the potential to constrain the temperature of their
compressed state. The emission of radiation from shock-compressed transparent
materials is rather remarkable from the point of view that these materials are,
at least initially, dielectrics. Shock compression apparently transforms ionic
materials (e.g., NaCl) into semiconductors (Kormer et al., 1966) with electrical
conductivity up to 10!%times that of the uncompressed material. Among
initially-covalent materials, Ahrens (1966) inferred a ~102 increase in the electr-

ical conductivity of MgO shock-compressed above 92 GPa, and Knittle and
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Jeanloz (1986) inferred a similar increase in the electrical conductivity of FeO
statically compressed above 70 GPa. For MgO, at least, this change in electri-
cal conductivity at high pressure is thought likely due to extrinsic (e.g., defect)
processes, rather than to band-gap closure (e.g., Liberman, 1978; Chang and

Cohen, 1984), as discussed below.

Oxides accepted as predominant chemical end-members of the material
constituting the earth’s mantle include MgO, FeO, Al,05, CaO and S10,. Of
these, (Mg,Fe)O may be an actual constituent of the earth’s mantle below 670
km (e.g., Jeanloz & Thompson, 1983). Hence the complete (P, T, p) equation-
of-state of MgO is relevant to studies of the earth’s mantle. Among the mantle
oxides, radiation emitted from Si0, (Lyzenga et al., 1983) and CaO (Boslough et
al., 1984) shock-compressed above 60 and 140 GPa, respectively, has been stud-
ied using optical pyrometry (Kormer, 1968; Lyzenga, 1980). Optical radiation
from MgO, Al,03 and SiO,, all shock-compressed to pressures below 75 GPa,
has also been studied spectroscopically (Schmitt & Ahrens, 1984; Schmitt et al.,
1986). If the wavelength-dependence of this radiation is consistent with a grey-
body source, it may be interpreted in terms of the temperature and effective
emissivity of the shock-compressed material. In the pressure range investigated,
shock-induced radiation from both initially amorphous SiO, (10 to 110 GPa)
and initially crystalline (B1) CaO (140 to 180 GPa) is consistent with this type
of source. Radiation from a-Si0,, however, is clearly consistent with a grey-
body source only above 60 GPa (Lyzenga et al., 1983; Schmitt et al., 1986).
Note that shock-compressed Si0, transforms to stishovite above 16 GPa and
melts above 70 GPa (Lyzenga et al., 1983), while shock-compressed CaO
transforms from a Bl to a B2 structure (Jeanloz et al., 1980), and FeO to an
unidentified phase (e.g., Jeanloz & Ahrens, 1980a; Jackson & Ringwood, 1981),
both above 70 GPa. Both MgO and Al,03 apparently do not change phase dur-

ing shock compression. Considering the sensitivity of optical radiation to
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energy processes, as well as the complexity of interpretation introduced by
dynamic phase transformations (e.g., SiOy: Lyzenga et al., 1983), we studied
the thermomechanical response of shock-compressed MgO as a material
apparently uncomplicated by phase transitions, at least below 200 GPa. Since
the experimental results we present below are consistent with a simple thermos-

tatic model of MgO, which includes the assumption of no phase transition, we

conducted only 4 experiments.

§2. Experimental

We conducted the experiments on a two-stage, light-gas gun (e.g., Jeanloz
& Ahrens, 1980a; Figure 2.1). In these, a lexan-encased tantalum (Ta) flyer-
plate, moving at 5.7 to 6.5 km/sec (Table 4.1), impacted a 1.5 mm-thick Ta
driver-plate in contact with the (100) face of a 3 mm-thick synthetic single-
crystal of magnesium oxide (MgO: similar to those used by Vassiliou & Ahrens,
1981). We covered the free surface of the MgO crystal with an aluminum mask
to avoid observing radiation from the target’s edge. Radiation from the target
reflects off a mirror, propagates though an objective lens, and is directed by a
(dichroic) pellicle beam splitter and two half-silvered beam splitters into 4
detectors filtered at nominal wavelengths of 450, 600, 750 and 900 nm. We
recorded the signal from each detector on a Tektronix 485 single-sweep oscillo-

scope and a LeCroy (model 8081) 100-MHz transient recorder.

Wanting to observe radiation from MgO, we attempted to minimize the
radiation intensity of the Ta-MgO interface by vapor-depositing 500-1000 nm of
silver (Ag) on MgO, and then placing the Ag “flm” in mechanical contact with
the Ta driver-plate to form the target. Requiring a material that would not
maintain a high temperature during the experiment, we chose Ag for its high

thermal conductivity at standard temperature and pressure (STP: 298 K and
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Figure 2.1. Geometry of the light-gas gun radiation experiment after Boslough
(1984). The projectile, shot through the barrel, impacts the sam-
ple at velocities between 5.7 and 6.4 km/sec. Radiation from the
sample is bent 90° by the mirror, travels through the objective
lens, and is divided up by the three-beam-splitter arrangement
among the 4 channels of the pyrometer. The resulting signals
from the photodiode in each channel are monitored by oscillo-
scopes and LeCroy transient digital recorders.
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0.1 MPa) and ease of deposition. We expected this Ag film to absorb any radia-
tion from the Ta-Ag interface, heat up much less than a mechanical Ta-MgO
interface (Urtiew & Grover, 1974), and contain no trapped gas that could also

contribute to interface radiation (Boslough, 1985).

§3. Model Calculations and Data Analysis

Our experiment begins when the projectile, containing the Ta flyer plate,
impacts the Ta driver plate. This process generates two shock waves at the
flyer driver interface, one traveling forward into the driver plate and the other
back into the projectile. When the shock wave propagating through the driver
plate reaches the driver plate-film (Ta-Ag) interface, a lower-amplitude shock
continues into the lower shock-impedance Ag-film, and a release wave is
reflected into the driver plate. Once the interface is compressed, the balance of
mass and momentum require that the component of the material velocity and
stress fields, respectively, in the driver plate and film normal to the interface be
continuous across it. Consequently, the compressed state of the driver plate
releases to a state having nearly the magnitude of the normal stress and
material velocity of the shocked-Ag film. An analogous process occurs at the
Ag-MgO interface, releasing the shock-compressed Ag to a state with essentially
the same normal material velocity and stress as the shock-compressed MgO.
Since the film is so thin, the driver plate releases (a second time) shortly after
this to a similar state. Wave reverberations quickly bring the driver plate and
film to states with the normal stress and material velocity of the shocked-MgO.
All of this occurs on a time scale less than 1 nanosecond (ns), and is not detect-

able by the pyrometer.

The basic data are in the form of radiation intensities at the four
wavelengths mentioned above, and these are measured as a function of time.

Clearly, the time-resolution of the data is much better than the wavelength-
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resolution. We present an example of these data in F igure 3.1, an oscilloscope
record at 750 nm for shot 146 (Table 4.1). Using the known radiation intensity
of a standard lamp (Boslough, 1984) at the observed wavelengths, we transform
these raw data into experimental spectral radiation intensities (in the form of
spectral radiance) as a function of time. The result of this procedure for shot

146 data is displayed in Figure 3.2.

We interpret the temporal and wavelength variations of data in the context
of the following model, a slight modification of Boslough’s (1985) model (see also
Boslough et al., 1986; Chapter I, §6. and Appendix E). We assume that the

o
N tntan
}v{"v 1Ver1e

shock-compressed/released Ag-film

at the Ag- ce, and shock-
compressed MgO, are the only sources contributing to the observed radiation.
Further, assume that the shocked-MgO layer radiates uniformly along the direc-
tion of shock propagation over the time scale of the observations. Then the
total radiation intensity, Iy.4()\t), 2 function of wavelength (\), and time after
the onset of radiation from the target, t, is the sum of that fraction of each

source intensity that emerges from the front of the target, s.e.,

I)‘mod(x’t) = éxmo(t') IXp](X’Tm) + éxm(t) IXpl[)"TlNl'(t)] [3'1]’
where the ‘“\” subscript indicates a spectral quantity. In [3.1], Ty is the

shock-compressed (Hugoniot) temperature of MgO (assumed homogeneous, uni-

form and constant), and T,{t) is the temperature of Ag at the Ag-MgO inter-
face. Further,

Coeo(t) = [1-Tias] Raggaolt) [1-Toa] [14+Tuer Tongo(t)] [1-Tipe(t)] [3.2]
and
ban(t) = (1] Rueoo(t) [1-Tyg] Trpeo(t) [1-ryp] [33]

are the effective normal spectral emissivities of the shocked-MgO and Ag at the

Ag-MgO interface, respectively, while Nws N and 1, are the effective normal
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Figure 3.1. Oscilloscope record of radiation intensity history at 750 nm for
shot 146. The radiation intensity rises sharply off-scale at t=0 as
the shock wave compresses the Ag-MgO interface to high tempera-
ture (see Table 2). Decay of the interface temperature and /or
absorption of interface radiation in the growing shocked-MgO
layer (see text) causes the observed intensity to decrease sharply
with time to about 170 ns into the experiment, at which point the
radiation intensity becomes approximately time-independent.
After about 240 ns (t,), the shock wave reaches the free surface of
the MgO, and the experiment is over.
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Figure 3.2. Spectral radiance data for shot 146 at 450, 600, 750 and 900 nm.

Note that t==0 in this figure has the same meaning as in Figure
3.1.




- 191 -

o

] T EiTe)

a2
£ E EE
g a g8 &8
oo oo
0 O W o
<t O >~ O

o

| -

e

o

- -™M

]

o

! o~

Ol G 0

(wu IS, ur/ M) @ouelpey reayoadg

Time (ns)




-192 -

spectral reflectivities of the MgO free-surface, shock front and Ag-MgO inter-

face, respectively. Also,

Txmo.o(t) = exP[-au*aoAl_t/ t‘exp)] [3'4]

and

Txmo(t) = exp [_am‘mot/ 1"exp] [3.5]
are the effective normal spectral transmissivities of unshocked and shocked-MgO
layers, respectively. In [3.4] and [3.5], Baoo2nd a%, are nondimensional forms

of the effective normal spectral coefficients of absorption in unshocked and

shocked-MgO, respectively, given by

a’x‘moE a‘xmo (U_Vmo)texp [3'6]

and

B0 o0 Ulexp [3.7]
Note that t.,;=d/U is the experimental time scale, U is the shock wave velocity
in MgO, d is the initial thickness of the MgO layer in the target, and Vpeo 1S the
material velocity of the shock-compressed state of MgO. Lastly, we have

C,
XS [ecz/)\T - 1]

I)\pl()‘aT) =

with C; = 1.19088X10°1W-m? and C, = 1.4388X102m'K) as the Planck
1 2

function.

Assuming the optical boundaries (e.g., Ag-MgO interface) are smooth (i.e.,
surface roughness much less than radiation wavelength), the effective normal
spectral reflectivity of the boundary between any two of these layers is a func-
tion of the change in the (complex) index of refraction across the boundary
(e.g., Siegel & Howell, 1981; see below). The effective emissivities [3.2] and [3.3]

are correct to first order in ryy, r\e and 1,3 we assume second- and higher-order
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reflections are negligible (Boslough, 1985; Chapter I, Appendix E). Because of
this approximation, [3.2] and [3.3] are, strictly speaking, lower bounds to &,,(t)
and €,.(t), respectively. Boslough (1985) also implicitly assumes Npr =0 in
[3.2]. Although the absorption coefficients and reflectivities are written without

an explicit dependence on \, they may be wavelength-dependent, as discussed

below.

Of all parameters influencing I o4(),t), only Tpn{t) is assumed to be poten-
tially time-dependent. This clearly complicates the time-dependence of the
observed radiation. In addition, through the Planck function, Tp(t) can
influence the wavelength-dependence of Iimod(A,t) with time. A number of
models for T, (t) are considered by Grover & Urtiew (1974; see also Chapter I,
§5. and Appendix D). For completeness, and as a basis for assumption, we out-
line one of these models, presumed appropriate to the MgO experiments dis-
cussed in this work. Assume that 1) energy transport is predominantly parallel
to the direction of shock propagation (¢.e., one-dimensional), 2) conduction is
the only energy transport process that substantially affects the temperature in
any part of the target on the time scale of the experiment, and 3) shock
compression/release processes in the target establish an initjal (t=0) tempera-

ture profile in the Ta-Ag-MgO system of the form

Tn, —co<x<-,6
T(x,0) = T, -6<x<0, [3.8],
Ty 0<x<00,

where & is the film thickness. Note that we assume the driver plate (Ta) and
MgO are thermal half-spaces. This last assumption presumes that shock
compression/release is much faster than conduction in any part of the target.

Tn and T,, are the temperatures of the partially released Ta and Ag, both at
the pressure of the Ag-MgO interface (i.e., pressure of the shock-compressed
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MgO). In the context of this model, all material properties of each target com-
ponent are constants, and referenced to their respective states at the pressure of

the Ag-MgO interface.

The temperature of a singly shock-compressed material, T,, may be
estimated from a classical thermodynamic energy balance (e.g., Ahrens et al,
1969; Jeanloz & Ahrens, 1980b; see Chapter I, §4. and Appendix A) in which we
assume the material compresses as an elastic fluid. It is possible that Ta (above
~295 GPa: Brown & Shaner, 1984) and/or Ag (<185 GPa: Lyzenga, 1980)

melts in the range of pressures and temperatures achieved in our experiments.
The

0. T NnO

1), Vassiliou & Ahrens (1981; and our resuits

[ 3

ata of Carter et
below) show no clearly resolvable phase transition in MgO below 200 GPa. For
simplicity, we assume that Ta and Ag do not change phase in our experiments.
If this is wrong, the values of T, we estimate for Ta and Ag are upper bounds
to the true shock-compressed temperature (evérything else being equal), since

shock-induced phase transformations use energy otherwise available for heating

the material. In the absence of phase changes, then, our estimate of T, is given

by
1 1 1 1
H S cv ] 2cv pl pH H [ ]

assuming that c,, the specific heat at constant volume of the shock-compressed
state, is independent of temperature. The subscripts “i,” “H,” “S,” and “V”
designate initial (STP), shock-compressed, constant entropy and constant
volume states of the material, respectively. In [3.9], Ae, is the change in specific
internal energy of the material compressed isentropically (at specific entropy s;)
from its density at STP, piy to a density py (that of the shock-compressed state),
while T is the temperature of the material along the isentrope referenced to S;

and p;. Also, P, is the pressure of the shock-compressed state.
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We estimate p, from the balance of mass and momentum across 1) the
shock front in each target material, and 2) the material boundaries between the
target materials (impedance match: Rice et al., 1958), by making the constitu-
tive assumption that the component of the shock-wave velocity normal to the
shock front, U, is a function of the change in the normal component of the
material velocity, v, across the shock front. On the basis of the U-v data for
Ta, Ag and MgO, we assume that U is a linear function of v (Table 3.1). The
change in temperature along the compression isentrope, Ty, may be estimated

from the classical thermodynamic Grineisen’s parameter, 7, via the relation

= { dinT }s : [3.10]

Since we assume ~p is constant in all model calculations, this relation integrates

to

Ts = T(sppd) = T(si0;) eXP{’Y(Pi) [1 - % } .

Relations [3.9] and [3.10] imply that T, is dependent on ~ only indirectly,
through T, We estimate Aeg from a third-order spatial finite-strain parameteri-
zation (e.g., Davies, 1973). Consequently, Ae,=Ae/p;/ pH,Ks‘ Igl) where Ksl and
Ksl are the (STP) isentropic bulk modulus and its first pressure derivative,
respectively, of the material (Table 3.2).

As stated above, T, and T, are the temperatures of Ta and Ag at the
pressure of shock-compressed MgO. We estimate the change in temperature
due to release of Ta and Ag from their respective shock-compressed states, to
their respective released states, by assuming that release occurs isentropically.
This allows us to use [3.10], assuming no phase transitions occur during release.
Also, we assume that each interface is smooth (Urtiew & Grover, 1974; see

Chapter I) in the sense that the shock front is thicker than the interface ‘“‘gap”
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Table 3.1. Standard Temperature and Pressure (STP) Parameters.

[ Property Symbol Ta Ag MgO Units
Density p 16.676* 10.501°  3.583° Mg/m?
Intercept of U-v relationt a 3.293%  3.07° 6.61¢ km/sec

(+0.049)t (+0.060)
Slope of U-v relation b 1.307% 1.55¢ 1.364
(£0.025) (+£0.020)
Bulk modulus K, 180.8°¢ 109.6°¢ 162.77 GPa
/ (£0.2)
(6K,/8P), K, 423 5209 @ 4.27¢
(£0.24)
Specific heat ¢, 140.2¢ 235.5%  937.4* J/kgK
Thermal expansion a 1.8% 5.74 2.7 x10° K-!
Melting temperature T, 3287¢ 1234° 3125¢ K
Gruneisen’s parameter ~ 1.4¢ 2.5¢ 1.3
Thermal conductivity k 57.57 4279 607 W/mK
Elastic Debye temperature 6, 263.8% 226.4% 942! K

t Uncertainties as quoted in source.
fie, U=a+bv.

¢ Robie et al. (1978).

} Mitchell and Nellis (1981).

¢ Marsh (1980).

¢ Vassiliou and Ahrens (1981).

¢ Calculated assuming K=pa’

/' Jackson and Neisler (1982).

! Calculated assuming K=4b-1.
*» Touloukian et al. (1975).

* Calculated from =aK/pc,.

7 Touloukian et al. (1970a).

k Alers (1965).

! Kieffer (1979).
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(Urtiew and Grover, 1974) due to roughness of the surfaces forming the inter-
face. This is consistent with the expectation that the Ag-MgO interface should
be smooth, as discussed above. At this idealized interface, Ta releases directly
to the pressure of shock-compressed Ag, and then both Ta and Ag release to the

pressure of shock-compressed MgO.

To calculate the release temperature, we need the density of Ag and Ta in
their respective release states. We estimate this using the variational method of
Lyzenga & Ahrens (1978) to obtain a lower bound on the density of the chosen
release state. This gives us, in turn, a lower bound on the temperature of that
state through [3.10]. As with the calculations of T,, we neglect the effects of
phase transitions driven by release and/or recompression on the resulting inter-

face temperature.

As boundary conditions, we assume that the temperature and energy flux
are continuous across the Ta-Ag and Ag-MgO interfaces, and use [3.8] to solve

for the Ag-MgO interface temperature, T, (t), i.e.,

. 200 A T — Top) O el Tag = Taieo)
Tplt) = T, + (1+0ulom)(1+%m) é(t) - ('1+amm) W(t) [3.11].

In [3.11], we have

80 = 3 Chaor Urad® erfel(m+ 2T
and

Y) =1 - vl [6i T + 3 (o ae Zenind)™ O(t)

m=]

with

Om(t) = erfe[méy/to ft] - Uniag erfc[(m+1)6y/tey /8] .
Also in [3.11], € = 6/ v/ Kagbexp) While
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Knfnem }‘é
LN

Orajag = { [3.12]

and

Omeo | A

%
- ()

[3.13]
LW

are the thermal-inertia “mismatches” (Carslaw & Jaeger, 1959, p. 321) between
Ta and Ag, and between MgO and Ag, respectively, at the pressure of the Ag-
MgO interface. The parameters Vgojag 30d Uy, .. represent combinations of

Oreoiac 30d 0oy, Tespectively, 1.e.,

y — (Fveora—1)

MgO | Ag (amo|~+1)
and

y = (a'nmg_l)

Ta|Ag (O"I\|~+1) *

In [3.12] and [3.13], k, p and ¢, are the thermal conductivity, density and
specific heat at constant pressure, respectively, of the designated material and
appropriate state of each material at the pressure of shock-compressed MgO.
To estimate the values of Onyag 20d O, . at high pressure, we need the
appropriate values of k, p and ¢, The densities result from the impedance
match and/or isentropic release calculations, while the high-pressure specific

heats at constant pressure come from the relation
¢ = 3nR(1 + anT)/M, [3.14]

where n is the number of components in the formula unit, M is the molecular
weight, R is the gas constant, and « is the thermal expansion (assumed
independent of pressure and temperature). Note that we assume the high-
temperature limit for ¢, (3nR/M). In the context of the Debye model, this

presumes that all target components are well above their Debye temperatures
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(STP values are given in Table 3.3). In addition, this assumes that the elec-
tronic contributions to c, are small relative to 3nR/M. Since the lowest-order
electronic contribution to ¢, scales with temperature, ¢, would be larger than
assumed here if these contributions are significant. If this is true, our estimates
of both ¢, and ¢, will be too low, while the temperatures will be too high, at a

given pressure.

Assuming that k;, and k,, are dominated by their electronic contributions,

we assume the relevance of the Wiedemann-Franz-Lorenz (WFL) relation

Pek

— -8 . 2
- =245X10° W-0/K [3.15]

(e.g., Berman, 1976), where p, is the electrical resistivity, to estimate k, and k,,
from electrical resistance data on shocked-Ta and Ag, respectively. To our
knowledge, shock data exist for Ag (Dick & Styris, 1975) up to 12 GPa, but not
for Ta. Bridgman (1952) investigated the change in electrical resistance of
many statically compressed materials, including Ta and Ag, but again only at
low pressure (10 GPa). Keeler (1971) investigated the change in the electrical
resistance of shock-compressed copper and iron up to 140 GPa. He found that
the resistivity of shock-compressed Cu decreased from =~ 1.67 to 0.56 uQd-em
with pressure up to =~ 100 GPa; a datum at 140 GPa implies that the resis-
tivity of Cu reaches a minimum between 100 and 140 GPa and then increases to
~ 0.83 u{d-cm at 140 GPa. As for Fe, the data imply that its electrical resis-
tivity decreases from =~ 2.5 to 0.47 uQd‘cm between 13 and 140 GPa (above the
a—e transition). In light of [15], these trends imply that the thermal condue-
tivities of shock-compressed Cu and Fe increase with shock pressure. On the
basis of the behavior of Cu, we naively assume that the electrical conductivity
of Ta and Ag generally increases with shock pressure. Then, from [15], we see
that a calculation of k, and k, wusing the STP electrical resistivities

(Pen = 12.45 pQ-cm and Pesg = 1.59 ud:cm: Weast, 1979), along with the
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appropriate release-state temperatures of Ta and Ag, respectively, will give us a
lower bound on these thermal conductivities. As for K\eor We assume it is dom-
inated by its lattice component at high pressure, and use the lattice thermal-
conductivity model of Roufosse & Klemens (1974) to estimate it. This assump-
tion is supported by band-gap calculations for MgO (e.g., Liberman, 1978), and,
in view of [3.15], by the results of Ahrens (1966), which suggest that the electri-
cal resistivity of MgO is ~10° uQl-cm above 9247 GPa.

Having established the means, we calculate selected model parameters at
high pressure from the STP parameters given in Table 3.1 and list the results
for each experiment in Table 3.2. From the impedance match and partial-
release calculations, we obtain the density of Ta, Ag and MgO at the pressure
of shock-compressed MgO, and from these, through [3.8] and [3.9], we obtain
Tn T, and T, for each experiment. Using these with [3.14], [3.15] and the
model of Roufosse & Klemens (1974), we estimate o,,,,,, and On ag for each
experiment and compare them with their STP values in Table 3.3. Also, we
have calculated Oueorac 30d 0Oy, 35 a function of Ag-MgO interface conditions
(pressure) and displayed them in Figure 3.3. Again, the values of k for each
materials, especially the metals, are probably the most uncertain aspect of these
estimates. On this basis, we see that Onae 1S approximately independent of
pressure and temperature. However, Ousoag decreases steadily from approxi-
mately 0.44 at STP to 0.03 at 200 GPa, mainly because of the large increase in
k., (Tables 3.1 and 3.2).

From [3.11], the initial value of T, (t) is given by
o, T,-T
Tnu(o) — TM_ WOIM( A MSO)
(140440 14¢)
This is also the value of Tp,(t) with é=oc0. For t=o00 or £=0, To{t) is given
by

[3.16)
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Table 3.2. Model Parameter Estimates for MgO Experiments.

Shot Material

Shock-compressed state

P T

p
(GPa) (K) (Mg/md)

—_—__—“r_—*_%

Ag-MgO interface state

T p k C
K) (Mg/m®) (W/mK) (J/kgK)

147 Ta

145 Ta

146 Ta

336.6 14430 28.130
277.7 13560 17.190

1740 2913 5.345

349.1 15320 28.350
288.2 14330 17.290
181.1 3032 5.426

364.3 16420 28.600
300.9 15270 17.410
187.9 3257 5.442

395.0 18730 29.130
326.7 17240 17.640
203.1 3667 5.536

11860 22.750 2336. 165
11400 15.440 17600. 487
2613  5.345 32.6 1324
12600 22.90 2477. 167
12060 15.53 18570. 500
3028 5.43 32.1 1326
13470 23.010 2651. 169
12810 15.590 19760. 516
3257  5.442 31.5 1332
15320 23.280 3014. 173
14420 15.750 22230. 548
3667 5.536 30.5 1342




- 202 -

Figure 3.3. Estimates of Ona 20d Oy, 23S a function of the Ag-MgO inter-

face pressure. The decrease of Oveoras With pressure is due to the
temperature-dependence of the the Wiedemann-Franz-Lorenz
thermal-conductivity parameterization for Ta and Ag given in the
text, causing k;, and k, to increase with pressure. These curves

are lower bounds to Onia 30d Oy, if ki, and k,, become
independent of temperature at high pressure (see text)
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Table 3.3. Thermal-Inertia Mismatch Estimates at STP and High Pressure.

Conditions O s

Omeo | Ag
STP 0.36 0.44
Shot 166 0.26 0.04
Shot 147 0.26 0.04
Shot 145 0.25 0.04
Shot, 146 0 or A e

V.a0 U.Us
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Ty{o0) = T,

2 [0 ad T = T = 0o ad Tae = Toeo)] 2
| (1405, ) (140, lm) 2 (Uniaieoind)™ [3.17]

m==0

For shot 146 conditions, T, (0)=14070 K and Tp{00)=13910 K. Note that
Tpe{t) is bounded below by Tyr{oc) in this case. The time-dependence of
Tpelt), embodied in ¢(t) and Yt), can more easily be seen in the followmg
approximations to Tp{t). For £—0, ¢(t) and 0(t) are given by

2 n bexp | 2 e
#(t) ~ mz=:o (Vra e ad) {1 -~ (2m+1)5[?p] e (m+R) e/ }
and [3.18]

% o0
Wt) ~ (I~vmy 0) + 2V1\|~E[ t::;p ) + Zl (Yo a6 Unaiag)™ Omn(t)

with

)
Om(t) ~ (1- Vnaiad — 2V mE[ exp ] {me—m252tm/t _ V.,,,M(m+1)e'(m+l)2€2t""’/t}

And for £é—o00, we have

b
~ Lt S m__ 1 ()26t
W~ g7 ) Z, et g

and [3.19]

v ®
W) ~1- _“Lﬂ[ ] & lt 2 ("o 126 a1 a0)™ O(t)

exp m=1

with

(t) ~ —[ y"{ Lo le/t _ Pning -<m+1)*e%m/t}
m Texp m

(m+1)

From the parameters in Table 3.2, we have V Eae ~10°m for shot 146

exp
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Figure 3.4. Model Ag-MgO interface temperature, T, (t), as a function of

time for different nondimensional Ag-film  thicknesses,
€ = 6/\/Kutexpr Where 6 is the Ag-film thickness and K, its ther-
mal conductivity at the Ag-MgO interface pressure. This calcula-
tion is for shot 146 conditions, with Onia=0-25, 0Oy 1=0.03,
T,=15320 K, T,=14420 K, and T,,,=3667 K (Table 3.2). From
these, we have Ty, (t=0)=14070 K and T, {t=00)=13910 K, as
defined in the text. The circles represent &€ = 0.01 and € — O (the
latter from [3.18] in text, respectively, while the diamonds and
dots are for £ = 1.0and § — oo ([3.19] in text), respectively.
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conditions; consequently, with §<10°m, we have a (conductively) thin film
(6<0.1). Using these estimates for shot 146 conditions, we display Tperlt), cal-
culated for 3 different values of £ (1.0, 0.1 and 0.01), and o,,,,, and Opgo1as fOT
the conditions of this shot (Table 3.3), in Figure 3.4. We also plot the 2
approximations (§—0, [3.18], and {—o0, [3.19]) in this figure. Clearly, over the
entire range of & Tpy,(t) lies within about 200 K of T,{0). In particular, with
£<0.1, Ty {t) is essentially independent of time and approximately equal to
Tp{o0). We note that T,,(t) will approach T, only if Opeoas>> > 1

(k=0 or k,,—00) and £<<1. So, assuming our estimate of Oreoag IS T€ASON-

nwr

e

-ation for assuming that Ty, (t) is essentially constant,
and approximately equal to Ty {c0), during the experiment.

With these considerations in mind, we display an example fit to the data
for shot 146 in Figure 3.5, assuming that Ty, (t) is time-independent. Assuming
that our measurement errors are independently random, and normally-
distributed around the model that actually fits the data, the “best fit’’ to the

data is achieved through minimization of the functional x%(\), given by

X2()‘) = X2[)‘;rxswa'xmo’rxmva]

1
[()]?

(e.g., Press et al., 1986), where o()\) is the uncertainty of the data at wavelength

Xt:[ I)\exp()"t) - I)\mod()‘vt) ]2 [3.20],

X. Using a golden section (GS) search technique (e.g., Press et al., 1986), we fit
Ixmod(At) t0 Iyexp(Nst) by fiXing rypg By400 to known values (Table 3.4), and T,
to its value as given by [9] and the parameters in Table 3.4. Fixing Ty to this
value is justified by agreement with the results of greybody fits discussed below.
In addition, the fit results are not sensitive to Tyeo in this case (Chapter I, §6.
and §7.). In this case, we vary r, e Naer 30d Tp to minimize x%(\). Even

though the fit using [3.20] will produce A\-dependent optical parameters as the
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Figure 3.5. Spectral radiance data and model fit at 600 nm (part a) and 750
nm (part b) for shot 146. Parameters for the fits are given in
Table 3.4. The fit implies that the data are largely consistent
with a high, time-independent interface temperature (T, ~20000
K for 146), strongly absorbing shocked MgO (Table 3.4), and the
estimated values for T,,, (Table 3.2) used in the fits. It also
implies that the contribution from the shocked MgO dominates
that from Ag at the interface after ~ 100 ns.
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data allows, we really cannot quantitatively assess'l) the ability of the data to
resolve the wavelength-dependence of these parameters, 2) whether we have too
many or few free parameters (even though they are all physically well-
established), and 3) whether we have over- or under-estimated measurement
uncertainties, all because the data lack sufficient wavelength-resolution (s.e., we
have 4 wavelength-dependent parameters and data at 4 wavelengths). In fact,
all we can really resolve is the wavelength-averaged magnitude of the model
parameters that are potentially wavelength-dependent. If we had sufficient
wavelength-resolution, we could let all free parameters vary as allowed physi-
cally in \,t space, and invert for their best values. However, t lution
the data with respect to the wavelength-dependence of Tysrs Bypgeor Danvr 1S, at best,
poor. Keeping all this in mind, we display the results of this fit for shot 146
data in Table 3.4. Beyond the data resolution problem, we note that the poten-
tial wavelength-dependence of the parameters allowed to vary in the fit, (espe-
cially a,,,o) is also dependent on our assumption of constant Tper(t). From [2]
and (3], we see that Toedt) 800 20d 3, control the slope and magnitude,
while the effective reflectivities and Ty influence only the magnitude, of
Imod(A,t). With a fixed a0, and Tpp>>T,,, then, the fit is most sensitive to
Toer and a,,,.; these should be best resolved. The results of this fit (Table 3.4)
suggest that shocked MgO at 200 GPa is ~ 50-100 times more absorptive than
at STP. Further, along with r,, (Table 3.4), a,., may be wavelength-
dependent. Also, we note that the fits favor a much larger Tper (~20000 K:
Table 3.4) than T, (0) calculated above for shot 146. This large value of Toer
implies that the Ag film is 1) is slightly porous (~8-10%) and/or 2) reshocked
at the Ag-MgO interface (Urtiew and Grover, 1974). Trapped gas at Ag-MgO
interface as radiation source (Boslough, 1985) seems unlikely since it was formed
under vacuum. However, we cannot rule out the influence of processes (e.g.,

reshocking) at the Ta-Ag interface on Tpr The decay of radiation intensity for
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Table 3.4. Radiation Model Parameterst for Shot 146.

M\

Wavelength A e00t N 8, o Nyer
(nm) (m™) (m™)
450 68 0.1 6300 0.9
600 82 0.3 7500 0.2
750 97 0.1 4200 0.6
900 128 0.1 3800 0.5

t Toer = 20000 K, Ty = 3667 K, and r,,c = 0.08 at all wavelengths in fit. r

was calculated from n,p.,, = 1.736 (Weast, 1979) and formula for effective nor-
mal spectral reflectivity given in text.

1  calculated from data of Touloukian et al. (1970c) and d=2.562 mm for shot 146
(Table 6).
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shot 146 is progressively faster going toward shorter wavelengths (z.e., from 900
to 450 nm: Figure 3.2). This can happen if Tp{t) decays very strongly over
time, and/or the effective spectral absorption-coefficient increases toward
shorter wavelengths. We do not see a cross over of the radiation intensities at
shorter wavelengths, however, implying that a strong decay of Ty (t) to near
Tio does not dominate the time-dependence of Tplt). If Tpe{t) does decay
strongly, the magnitude of 30 Would be less and its wavelength-dependence
different. In this sense, our assumption of constant Tper has given us an upper

bound on the magnitude of : N

In context of our model, the effective normal s
boundary between any two (dynamic) target components i and j is given by
(e.g., Siegel & Howell, 1981)

(mi—ny)? + (wi—wyj)?

(nxi+nxj)2 + (er*'wxj)?

15N

In this relation, n, and wy, are the real and imaginary parts of the complex
index of refraction of the material, and, as with all the other optical parameters,
they are both potentially \-dependent. wy, is also known as the electromagnetic
extinction coefficient. The values of r,, from the fit imply that the refractive
index of MgO changes very little upon shock compression up to 200 GPa. This
is consistent with the low-pressure data of Vedam & Schmidt (1966), which
imply that the refractive index of MgO actually decreases very slightly
(~1.56X1073/GPa) because of the decrease in electronic polarizability, which
dominates the intrinsic increase in refractive index with pressure. The slightly
higher value of rg at 600 nm is clearly warranted by the data (see below), and
may represent a dependence of Dyeo ©On wavelength. Noting that
Ao = MWy o/ N (e.g., Siegel & Howell, 1981), where Wyeo is the extinction

coefficient of shocked MgO, our results imply that wm~10“3, also consistent
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with a small value for rg. The values of I'er 10 Table 3.4 may be compared
with r,;, (600 nm) = 0.9 at STP, calculated with n,,, = 0.18, w,,, = 3.64 at 600
nm (Svet, 1965) and n,, = 1.736 (Table 3.4). Since w,,, appears to be too
small to affect ;. significantly, the decrease of Toer 3t high pressure implied by

the fit may represent a change mainly in n,,, and/or w,,, with pressure.

The strongest result of this fit is that MgO is significantly more opaque at
high pressure. This is consistent with the results of Gaffney & Ahrens (1973),
who observed a wavelength-independent increase in opacity at 46.5 GPa in

MgO. This change in opacity may be due to shock-induced defect structures,

exception of Al,O; (Bass et al.,, 1987; but see Urtiew, 1974), all initially tran-
sparent materials studied so far (e.g., LiF: Kormer, 1968; CaAl,Si,O4:
Boslough et al., 1986) lose some transparency during shock compression. We

note that a similar fit to shot 145 data is qualitatively consistent with that for
shot 146 data.

To get more precise estimates of the optical parameters, we need further
constraints on &,.(t) and Ty,(t). One possible means to this is the use of two
recording systems during the experiment, one set to record the initial intensity
of the interface radiation, and the other set to record the expected intensity of
the sample radiation. In this way the early history of the radiation intensity
should constrain the early time-dependence of &n{t) and T, (t), before the
optical properties of shocked MgO can significantly affect the observed radiation

intensity.

Having some understanding of the time- and wavelength-dependence of the

observed radiation intensity, we can, with some justification, fit the greybody

relation

Igb(Mst) = &gy(t) Lip[N, Tay(t)] [3.21]
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at a given time, which we designate t;, to the end of the observed radiation his-
tories and find the effective emissivity and temperature of shocked MgO. The
choice of t, is motivated by the calculated shock-wave transit time through the
MgO, but is not critically dependent on this choice, as we show below.

To fit I z(),t) to the data, we again use the x? measure. In this case, it is

given by
X*(t:) = x2[t;585,, Tgyl

=3 { [a(;)]'z { Dexpote) = au(te) LM Tie(t)] }2} [3.22].

Unlike [3.20], the sum is now over all wavelengths observed in the experiment.
On this basis, &.,,(t,) and Texp(t;) represent the values of &(t,) and Tgi(t,) that
minimize x2(t;). Since the fit is with respect to wavelength, the value of &, (t,)
represents a wavelength-average of &,,(\,t;). Since x%(t;) is a nonlinear func-
tional of temperature, we find its minimum numerically using 1) GS search, as
above, and 2) the method of Levenberg as formulated by Marquardt (LM). See,
for example, Press et al. (1986), for details on both of these methods. To obtain
starting values of &g(t) and Tg(t) for the nonlinear fit, we use Wien’s approxi-
mation to L,(A\,T) in x3(t.), which follows from Lip(M\T) in the limit
exp(Cy/AT)>>1, 1.e.,

2C, _
Dowgh0t) = i) i(Mt) = Egy(t) - & ATa0 3.23]

The relative error incurred in approximating Lipt by Ly is equal to
exp(~Cy/AT); this approximation is accurate to within 19 for AT<3X10°m'K
(Siegel & Howell, 1981). Since we can fit Wien's relation to the data via linear

least squares, we can solve for ég,(t,) and Tg,(t,) directly (i.e., without iteration).
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We argue above that the radiation intensity at the end of the record likely
represents only that of shocked MgO. In this case, from relations [3.1] and [3.2],
we also see that, with &,(Mt=t; oty J0 << &0 Moty),

I)‘mod(>"tr) ~ E\Exmo(t’r) IXpl(x’Tmo) [3'24]
with
Eaoltr) = (1 = Iygs) (1 - ig) (1 + rpre™ed) (1 — e70ke) [3.25]

Recalling that r,s is independently established (Table 3.4), and taking the
values of rg, a%.,and r, established by the model fit, we may ‘““correct” the
radiation data and fit for &,;(t;) Teyp(t;) as above. This is a somewhat crude
way of correcting for apparent \-dependence of o from the fit using [3.20]
discussed above. In principle, this should allow us to fit for Texp(t;) alone, but
we allow &, (t;) to vary because we already set €exp(ty) = 1 in one of the GS fits

(i.e., out of curiosity).

Unlike the previous fit, we have 4 data and 2 parameters (at least for shots
145 and 146) in the greybody fit. However, we are still confined to wavelength-
average values for &.,(t;). We present the results of both the corrected (using
[3.24]-[3.25]) and uncorrected fits in Table 3.5, and plot the uncorrected fit for
shots 145 and 146 in Figures 3.6a and 3.6b, respectively. The results for shot
166 (Table 3.5) do not include a LM fit because the method requires at least 3
data points for a fit to 2 parameters. The uncertainties associated with the GS
fits represent measurement uncertainties mapped into uncertainties for €exp(tr)
and Ty (t,) through use of [3.26]-[3.29] given below. However, the uncertainty
associated with each LM fit is the standard deviation of that fit. Roughly
speaking, the values of x?(t,) given in Table 3.5 can be compared to the number
of data minus the number of parameters in the fit to judge its “goodness.” On
this basis, the fit for shot 145 is not as ‘“good” as that for 166, and especially

146. The experimental uncertainties for shots 166 and 147 are much lower, of
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Table 3.5. Greybody Fits to Radiation Data at by

e — —
Uncorrected Corrected
Shot Parameter[Wien GS LM GS [Wien GS LM GS
(tr) (ég=1) (égy=1)
166 Eexp 1.02 1.0 1.23 1.18
(750,900)§ (285 ns) ((0.22) (0.22)t (0.22) (0.22)
Texp 3046 3056 3054 3062 3081
(285 ns) (120) (120) (115) (120) (120)
x2 0.001 0.0005 0.02 0.001 0.0005
147 Texp 2081 3071
(600) (210 ns) (120) (130)
145 Eexp 0.41 1.02 0.64 0.50 1.02 0.75
(all) (210 ns) |(0.80) (0.80) (0.18)f (0.80) (0.80) (0.21)
Texp 3739 3174 3352 3186 |[3756 3281 3372 3292
(210 ns) (480) (355) (200) |(355) (485) (375) (220)
X2 968 7.29 870 7.33 [9.69 7.58 8.77 7.62
146 Eexp 0.88 1.04 1.17 1.07 1.21 1.42
(al) (200 ns) [(0.69) (0.69) (0.17) (0.69) (0.69) (0.20)
Texp 3735 3615 3530 3639 |3757 3663 3549 3784
(200 ns) |(410) (385) (80) (390) |(415) (395) (100) (420)
x? 164 141 135 145 [1.64 1.46 1.36 1.70

1.
:
§

- Golden section search fit. Uncertainties represent experimentally-based
uncertainties.

- Levenberg-Marquardt fit. Uncertainties represent standard deviations of
corresponding fit.

- Wavelengths used in fit.
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Figure 3.8. Greybody fits to uncorrected shot-145 data (part a) and shot-146
data (part b) as a function of wavelength for €exp(tr) and Teyy(t,).
The size of the data rectangles represent experimental uncertainty.
Note the deviation (i.e., outside experimental uncertainty) at 600
nm of the spectral radiance below the various fits. This observa-

tion is substantiated as a larger value of r,,((600 nm) (Table 3.4) in
the fit of Figure 6b at 600 nm.
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course, mainly because they are based on only two wavelengths and a single
wavelength, respectively. For shots 145 and 146, within the fit uncertainty, the
LM and GS results agree (Table 3.5). Also, there is, within uncertainty, no
difference between the corrected and uncorrected results (the corrected-data
results are slightly closer to the calculated values of Tweo as listed in Table 3.2).
Except for the shot-145 LM results, the effective emissivities of the LM and GS
fits are >1, an unphysical result. However, the associated data and fit uncer-
tainties easily allow the effective emissivities to be less than unity. Also, as

noted by Boslough & Ahrens (1986), &g, is much more sensitive to data scatter

form of I,;y, as can be seen from the following relations:

6Tﬁt ~ alDTﬁt ] ﬂkgb [3 26]
T4 Alnlygy J egn gy
and
6€ﬁt Bln%ﬁt J ﬂkgb [3 27]
Eﬁt BlnI)‘gb T\ I)\gb ) ’
where
alnTﬁt ] U
—_—— = <1 , >0 3.28],
[ Olalgy Jeyn (1 + w)in(1 + p) # [3-28]
Olné
2 ) =1 [3.29),
3lnI)‘sb Ta )
and
T e

(note that X\ and &g, are fixed in this last relation). From these relations we see




@

- 221 -

that a given variation of Iyexps and hence Iygp in the fit, will have a larger
impact on &g than T, z.e., 6T g/ Tgy < 685,/ 85 for all Olzgb/Irgb- Consequently, it
is not surprising that €exp(tr) could be greater than unity with any significant

scatter, if not constrained to be less than or equal to unity in the fit.

The fits displayed in Figures 3.6a-b for shots 145 and 146, respectively,
both show that the 600-nm data lie significantly below the fits. This is also sug-
gested by the model results displayed in Figure 3.5 for shot 146, where
(600 nm)=0.3. This deviation probably does not represent systematic error,
since we have never seen anything like it in the data from other experiments of
this nature. That it reflects a property of shock-compressed MgO is supported
by the radiation spectrum of shock-compressed MgO at 60 GPa (Schmitt &
Ahrens, 1984), which is nonthermal and displays a sharp drop in intensity below
~650 nm, possibly due to \-dependent absorption and/or reflectivity. This
possibility is consistent with the results of the fit displayed in Table 3.4. This
apparent nonblackbody trend in the MgO data is one possible cause of “data

scatter’” leading to nonphysical values of €4t, as discussed above.

That our choice of t;, within a given window of time, is not essential to our
results can be shown by fitting a window of time around t, and displaying the
consequences. We do this for shot 146 uncorrected data and display the results
in Figure 3.7. As evident, the fit is essentially time-independent 10 ns on either

side of t.. This is true for the fits to shots 166 and 145 as well,

§4. Discussion

In Table 4.1, we list the greybody fit and uncertainties, along with the cal-
culated shock-wave velocities, shock-transit times, pressure and temperature, for
each experiment. The uncertainties of calculated quantities are based on a

propagation of the parameter uncertainties listed in Table 3.1 through the
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Figure 3.7. Greybody efective emissivity, €.,,(t) (part 2), and temperature,
Texp(t) (Part b), as a function of time near the end of the radiation

history for shot 146. The fits are essentially time-independent in
this time window centered on ty.
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calculation of each quantity. The values of €exp(tr) and Ty (t;) in Table 4.1 are
those for the GS fit with &g, and Tj, variable, which we choose as representative
of the other estimates, within experimental uncertainties. The average uncer-
tainty of T, is somewhat higher than, but relatively close to, the average
experimental uncertainty of Texp(t;)- Note that the calculated shock-wave tran-
sit times through MgO are, on average, about 40 ns less than the duration of
each experiment, as defined by a break in the radiation history about 240 hs
after the rise in radiation intensity (see Figures 3.2 and 3.3, and compare with
ts; for shot 146 in Table 4.1) due to release of MgO. This seems to be a real

discrepancy; experimental times should be resolvable to within +5 n

[~]
De reso witial ns. VvVve

Ne have

no explanation at this point.

The good agreement between the temperatures inferred from the radiation
data and calculation using [3.9] implies a posteriors that the assumptions that 1)
MgO compresses as an elastic fluid, 2) MgO does not change phase during shock
compression, and 3) ¢,=3nR for MgO, are valid for the range of pressures
covered by our experiments. The first assumption implies that the temperatures
achieved by MgO during shock compression in the pressure range covered are
governed by its bulk elastic properties and lattice specific heat. At much lower
pressures (<60 GPa), MgO radiates nonthermally (Schmitt & Ahrens, 1984),
which is also consistent with these calculations; T, in this pressure range is

<500 K.

No variation of ¢, and/or v is reflected in the uncertainties for Ty listed in
Table 4.1. Any variation of these parameters would, of course, only increase
the uncertainty of T,., which already encompasses that of Texp(ty). In other
words, unless we ‘“‘assume’’ that we can actually calculate T,,, much better
than indicated by its uncertainties listed in Table 4.1, Tep(t;) cannot place
bounds on a possible variation of ¢, or 7, because the uncertainty of Ty 1s

larger than that of Texp(ty). With this in mind, we can alter the values of cy
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Table 4.1. Experimental Results and Model Estimates.

Experimental Results

Model estimates

Shot P d Vimp €xp Texp tr U tet Puo Tueo
(Mg/m®)  (mm) (km/s) (K) (ns) [(km/s) (ns) (GPa) (K)
166 3.562 3.468 5.73 1.18 3081 285 | 12.10 286.6 1740 2913
(0.002)t (0.005) (0.04) (0.22) (120) (10) (0.14) (3.4) (2.6) (415)
147 3.595 2,513 5.87 1.00 3071 205 | 12.22 2057 181.1 3028
(0.002) (0.002) (0.03) (0.33) (130) (10) (0.14) (2.4) (2.3) (430)
145 3.577 2.621 6.04 1.03 3281 210 | 12.38 211.7 1879 3257
(0.002) (0.003) (0.03) (0.79) (375) (10)| (0.15) (2.5) (2.6) (445)
146 3.587 2.562 6.36 119 3663 200 | 12.68 202.0 203.1 3667
(0.002) (0.004) (0.03) (0.69) (395) (10) | (0.15) (2.5) (2.8) (495)

t - measurement uncertainty.
p - STP bulk density.

d - Sample thickness.
Vim

p - Impact velocity.

U - Calculated shock wave velocity.
tyy - Calculated transit time of shock wave through MgO.

P,

meo - Calculated pressure of shock-compressed state of MgO.

Tyeo - Calculated temperature of shock-compressed state of MgO.
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and vy given in Table 3.1 and obtain other values for Tyeo than those given in
Tables 3.2 and 4.1. As discussed above, T, is much more sensitive to varia-
tions in c, than ~. For example, using the conditions of shot 146, if we first
vary 7, and then c¢,~3nR/M, of MgO (Table 3.1) by +10%, we get a +20 and

+ 350 K variation in Ty Tespectively.

We display the experimental results in Figure 4.1 along with temperatures
inferred from radiation data for SiO, (Lyzenga et al, 1983) and Mg,SiO,
(Lyzenga & Abhrens, 1980). The continuous curve is the calculated locus of
shock-compressed states for MgO, and the dot-dashed curve is a Lindemann

estimate of the melting curve of MgO, calculated from the parameters listed in

Table 3.1 by assumin

~~~~~ gt solid-MgO along the melting curve is
equal to that along the MgO shock-compression curve at the same pressure
(Chapter I, §4.). Also displayed are the mantle temperature profiles of Brown &
Shankland (1980) and Stacey (1977), which are together representative of the
range of models currently considered plausible. From the agreement of data
and calculations, and in light of the Lindemann estimate, we conclude that
MgO does not change phase below 200 GPa. Not shown in Figure 4.1 is the
intersection of the model shock-compression and Lindemann curves for MgO at
265 GPa. On the basis of the “ideal” behavior exhibited by MgO up to this
point, we speculate that it won’t melt below =~ 265 GPa. Also, if MgO has an
effective emissivity near unity between 170 and 200 GPa, as our results suggest,
then the observations of Kondo & Ahrens (1983) and Schmitt & Ahrens (1984),
as well as the models of Svendsen & Ahrens (1986), imply that MgO probably
does not localize thermal energy below this pressure. Any localization should
catalyze melting or other energetically favored transitions at higher pressures.
Shock-induced deformation in MgO is localized (Chen et al, 1975) in the form
of microfracturing up to 60 GPa, but apparently this has no impact on the tem-

perature field, in contrast to other oxides such as SiO, (Schmitt & Ahrens,
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Figure 4.1. Experimental and model pressure-temperature shock compression
results for MgO. The Lindemann melting and shock compression
curves for MgO are calculated from the parameters for MgO in
Table 3.1. The MgO experimental results are represented by rec-
tangles. Also shown are the mantle temperature profiles of Stacey
(1977) and Brown and Shankland (1980), as well as the experimen-
tal results of Lyzenga et al. (1983) for Si0, and Lyzenga and
Ahrens (1980) for Mg,SiO,. Note that the MgO experimental

results are quite consistent with the model curve and well-below
the Lindemann estimate.
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1984). Apparently the energy dissipated in localized deformation in shocked-
MgO is efficiently transported away before an energy density sufficient to effect

melting or solid-solid transformation is attained (Svendsen & Ahrens, 1986).

What are the processes responsible for the transition of MgO from predom-
inantly a nonthermal to a thermal radiator (with e—1) between 60 and 170
GPa? The apparent change in electrical resistivity of shocked-MgO from >10°
to ~10 'm above 92 GPa (Ahrens, 1966) is consistent with either 1) closure of
the valence-conduction electron band-gap, or 2) proliferation of initially present
or shock-induced (Gager et al,, 1964) defects possessing free electrons. However,
since the MgO band-gap appears to increase in the pressure range of our experi-
ments (Liberman, 1978; Bukowinski, 1980; Chang and Cohen, 1984), we specu-
late that, at high pressures above ~100 GPa, defects in thermal equilibrium

with MgO are responsible for the observed radiation from MgO.

§5. Summary

We use a model of conductive and radiative transport among the target
components of our experiments to interpret the radiation history of the target
in terms of its optical and thermal properties, and infer the shock-compressed

temperature of MgO. On this basis, we have the following results:

1. The model for conduction between the Ta driver, Ag film and MgO implies
that the Ag-MgO interface temperature, T, (t), will be approximately con-
stant on the time scale of the radiation observations (~200 ns) for values
of the nondimensional interface thickness § less than 0.1 (Ag-film thickness
< 1000 nm) or greater than 1.0 (5>10 pm). Estimates of this thickness
for the Ag film of each experiment imply that £<0.1 for all experiments.
The model implies that Tpn{t) cannot decrease by more than about 200 K

in any of the experiments (regardless of the value of €) because of the large
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thermal-inertia mismatch between Ag and MgO.

Assuming T,,{(t) is independent of time, a fit of the radiative-transport
model to MgO radiation-history data implies that shocked MgO is ~100
times more absorbing (% ~ 6300, 7500, 4200 and 3800 m™! at 450, 600,
750 and 900 nm, respectively, at 203 GPa) than unshocked MgO in the
pressure range covered by the experiments. The coefficient of absorption
for shocked MgO and the effective normal spectral reflectivity of the
shock-front and Ag-MgO interface are wavelength-dependent in this fit
(Table 3.4). Also, Ty, from this fit is much higher (~ 20000 K) than
estimated from ideal-release calculations for solid Ag-film, implying that
the Ag film may be slightly porous (<10 %) and/or reshocked. Independ-
ent constraints on Tp,(t) and &,,{t) through modification of the experi-
ment to record both interface and sample radiation intensities are needed

to pin down these possibilities.

The radiative transport model fits imply that greybody fits to the end of
the radiation histories for each experiment constrain the effective normal
(wavelength-averaged) emissivity and absolute temperature of MgO. Using
two different fitting techniques, we establish, within experimental uncer-
tainty, the robustness of our fits. The greybody fits agree well with model
temperature calculations, implying that, between 170 and 200 GPa, MgO
compresses as an elastic fluid with a Dulong-Petit specific-heat value. The
agreement between Texp(t:) and T, the latter calculated assuming no
phase transformations, as well as the values of €exp(tr) (~0.1~1, Table 3.5),
together imply that MgO does not change phase below 200 GPa. In addi-
tion, since the calculated shock-compression curve and Lindemann melting

curve of MgO intersect at 265 GPa, we speculate that it will not melt
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below this pressure.

4. Comparison of the experimental results for MgO with those of SiO, and
Mg,SiO, shows that the shock-compressed temperatures of Mg,SiO, lie
between those of SiO, (below) and MgO (above), analogous to the density-
pressure relations between these materials, and emphasizing the role of the
bulk elastic properties of these materials in controlling the first-order mag-
nitude of their respective shock-compressed temperatures. Comparison of
the extrapolated MgO shock-compression curve with a range of possible
mantle temperature profiles implies that shocked MgO is colder than the
lower mantle by ~ 1000-1500 K at the same pressure.
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Abstract

Optical radiation from shock-compressed crystal CaMgSi, 04 (diopside) con-
strains crystal CaMgSi,Og Hugoniot temperatures of 3500-4800 K in the 150-170
GPa pressure range, while glass CaMgSi,Og, with a density 87% that of crystal
CaMgSi,Og, achieves Hugoniot temperatures of 3600-3800 K in the 105-107 GPa
pressure range. The radiation history of each of these materials implies that the
shock-compressed states of each are highly absorptive, with effective absorption
coefficients of >500-1000 m™!. Calculated Hugoniot states for these materials,
when compared to the experimental results, imply that crystal CaMgSi,Og
Hugoniot states in the 150-170 GPa range represent a high-pressure phase
(HPP) solid (or possibly liquid) phase with an STP density of =~41004-200
kg/m3, STP Grineisen’s parameter of =1.54+0.5 and STP HPP-LPP specific
internal energy difference, Aeiﬁ‘ % of 0.94+0.5 MJ/kg. These results are con-
sistent with a CaSi03-MgSiO; perovskite high-pressure phase assemblage. For
glass CaMgSi, O, we have the same range of HPP properties, except that Aeiﬁ‘ o
is 2.3+0.5 MJ/kg, a strong indication that the glass CaMgSi,O4 Hugoniot states
occupy the liquid-phase in the system CaMgSi,O;. Comparison of the
pressure-temperature Hugoniot of crystal CaMgSi,Og with the Hugoniots of its
constituent oxides (s.e., Si0,, CaO and MgO) demonstrates the primary
influence of the HPP STP density of these materials on the magnitude of the
temperature in their shock-compressed states. The crystal Di pressure-
temperature Hugoniot constrained by the experimental results lies at 2500-3000
K between 110 and 135 GPa, within the plausible range of lowermost-mantle

temperature profiles.
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§1. Introduction

Mg-Fe oxides and/or silicates are currently believed to dominate the com-
position of the earth’s mantle. CaMgSi,Og, which in mineral form is known as
diopside, represents one of several pyroxene compositions relevant to investiga-
tions of composition of the earth’s mantle, and is the only natural pyroxene to
form large, transparent single crystals suitable for shock-temperature investiga-
tion. The possibility that the earth accreted inhomogeneously (e.g., Turekian
and Clark, 1969), or strongly differentiated during core formation implies that
certain regions of the mantle, such as D”, may be composed of oxides and/or
silicates of much more refractory elements, such as Ca and/or Al. A number of
previous static and dynamic experimental efforts (e.g., Liu, 1978, 1979a;
Svendsen and Ahrens, 1983; Boslough et al., 1984; Boslough et al.,, 1986) and
modeling efforts (e.g., Ruff and Anderson, 1980) have directly or indirectly
addressed this issue. In particular, calculations indicate that CaMgSi,O4 (Di)
could be one of the earliest phases to condense out of the solar nebula (Gross-
man and Larimer, 1974), and so may be a major participant in inhomogeneous
accretion. In this paper, we use the shock-induced radiation from Dj to con-
strain its Hugoniot temperature. Combining these constraints with previous
work on the mechanical response of Di to shock compression, we place con-
straints on the pressure-density-temperature equation of state of the high-
pressure phase(s) (HPP’s) of Di. The high-pressure (> 50-80 GPa: Svendsen
and Ahrens, 1983) shock-compressed states of crystal Di are likely to represent
an assemblage of CaSiOz-MgSiO; perovskites (Liu, 1979b).

§2. Experimental

We conducted the experiments on a two-stage, light-gas gun (e.g., Jeanloz
and Ahrens, 1980a; Figure 2.1). In these, a lexan-encased tantalum (Ta) fiyer

plate, accelerated to velocities between 4.7 and 6.1 km/sec (Table 5.1),
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Figure 2.1. Geometry of the light-gas gun radiation experiment after Boslough
(1984). The projectile, shot through the barrel, impacts the sam-
ple at velocities between 5.7 and 6.4 km/sec. Radiation from the
sample is bent 90° by the mirror, travels through the objective
lens, and is divided up by the three beam splitter arrangement
among the 4 channels of the pyrometer. The resulting signals
from the photodiode in each channel are monitored by oscillo-
scopes and LeCroy transient digital recorders.
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impacted a 1.5 mm-thick Ta driver plate in contact with an approximately 2
mm-thick (100)-oriented, transparent crystal Di samples or 4 mm-thick, trans-
parent glass Di samples (Table 5.1). We covered the free surface of the samples
with an aluminum mask to avoid observing radiation from the target’s edge.
Radiation from the target reflects from a mirror, propagates though an objec-
tive lens, and is directed by a (dichroic) pellicle beam splitter and two half-
silvered beam splitters into 4 detectors filtered at nominal wavelengths of 450,
600, 750 and 900 nm. We recorded the signal from each detector with a Tek-
tronix 485 single-sweep oscilloscope and a LeCroy (model 8081) 100-MHz tran-

sient recorder.

The densities of crystal Di samples (Table 5.1) agree well with the ideal
value of 3277 kg/m? (Robie et al, 1978). This is consistent with the microprobe
analyses of our sample materials, given in Table 2.1. The glass Di samples are
about 13.6% less dense than the crystal samples; this is consistent with the den-

sity of glass Di used, for example, in spectroscopic studies (Binsted et al., 1985).

As in previous studies (e.g., Lyzenga, 1980; Boslough et al. 1984), we
vapor-deposited 500-1000 nm of silver (Ag) on the sample and then placed the
Ag “flm” in contact with the Ta driver plate to minimize radiation from an
otherwise rough driver plate-sample interface. We expected this Ag film to
absorb any radiation from the Ta-Ag interface, heat up much less than a
mechanical Ta-CaMgSi,Og interface (Urtiew and Grover, 1974), and contain no

trapped gas that could also contribute to interface radiation (Boslough, 1984).

§3. Data Analysis

Our data set consists of six experiments: four on diopside (CaMgSi, 0, Di)
single-crystals (140, 141, 169 and 170, Table 5.1), and two on CaMgSi, 04 (Di)
glass (196 and 197, Table 5.1). We record the radiation intensity from the
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Table 2.1. Microprobe Analyses of Starting Materials.

e
Shot 140,141% 169,170% 196,197§

Na,0 0.38" 0.48 0.01
MgO 17.40 17.63 15.75
Al,O, 0.36 0.22 0.03
SiO, 55.74 55.32 58.48
CaO 25.15 24.78 26.07
TiO, 0.02 0.11 0.00
Cr203 0.07 0.48 0.00
MnO 0.08 0.04 0.01
FeO 0.82 0.96 0.00
Total 99.97 99.68 100.37
En 48.4 49.0 49.0

Wa 50.3 49.5 51.0

Fs 14 1.5 0.0

1 Diopside from DeKalb, NY, supplied by S. Huebner, USGS, Reston, VA.
} Russian diopside, supplied by Gem Obsessions, San Diego, CA.

§ Diopside glass, supplied by G. Miller, Caltech, and G. Fine, Corning Glass Co.
* weight. %
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target as a function of time at the wavelengths stated above. In F igures 3.1
and 3.2, we display examples of these data at 750 nm. The data shown in Fig-
ure 3.1 are from crystal Di (shot 141, Table 5.1), while those shown in Figure
3.2 are from glass diopside (shot 197, Table 5.1). These radiation histories are
representative of those at all other observed wavelengths and in all other experi-
ments. With the known radiation intensity of a standard lamp (Boslough, 1984)
at the observed wavelengths, we transform these raw data into experimental
spectral radiation intensities (in the form of spectral radiance) as a function of

time. The radiance data for all experiments are listed in Table 3.1.

As stated above, the target consists of a Ta driver-plate, Ag film layer and
sample layer. Radiation from the target is first observed when the shock wave
compresses the Ag film at the Ag-sample interface (to, Figure 3.1 or 3.2). As
shown most clearly in Figure 3.2, the radiation intensity in all experiments rises
sharply to a peak value, and then as the shock wave propagates into the sam-
ple, the intensity decays almost as quickly to a time-independent magnitude
reflecting that of the shocked sample. Since the Ag film is almost certainly
much hotter than the sample over the time scale of the experiment (Boslough,
1984; Svendsen and Ahrens, 1987), the strong decay of the initial radiation
intensity is most likely due to shock-induced opacity of the shocked sample
(Boslough, 1985). With the possible exception of Al,0, (Bass et al., 1987), all
initially transparent materials studied so far (e.g., LiF: Kormer, 1968;
CaAlySi,Og:  Boslough et al., 1986) lose some transparency during shock
compression. In the present case, the thermal radiation from Ag at the Ag-
sample interface is apparently strongly absorbed by the shocked sample such
that observed radiation intensity is quickly dominated by the sample intensity
(Boslough, 1985). Hence, we observe a fast decay of the initial high intensity
and a subsequent time-independent radiation intensity displayed in Figures 3.1

and 3.2. To demonstrate these considerations from a model viewpoint, we
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Figure 3.1 Radiation intensity versus time record for shot 197 on diopside
glass at 750 nm. The time t=0 marks the arrival of the shock-
front at the Ag-Di interface, while t, marks the point in the radia-
tion history (with intensity V) used to determine spectral radiance
of glass Di at this wavelength.
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Figure 3.2. Radiation intensity at 750 nm versus time record for shot 141 on
diopside single-crystal. Duration of sample radiation intensity is
much shorter than that of glass experiment shown in Figure 3.1
because crystal sample is thinner (Table 5.1).
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Table 3.1. Radiation Data and Fits.

Spectral Radiance Fits
(kW/m?sr-nm)
Shot 450 600 750 900 Parameter(t,) Wien GSt LMt GS (ég=1)
(nm) (nm) (nm) (nm)
140 315 309 287 €xp(140ns) 065 059 0.56
(0.59) (0.45) (0.81) (0.37) (0.37) (0.23)
Texp(140 ns) 4152 4215 4270 3803
(351) (364) (356) (293)
x2 0.14 0.06 0.06 0.05
141 6.14 538 6.06 571 éxp(145ns) 071 065 0.75
(1.21) (1.00) (0.77) (0.93) (0.34) (0.34) (0.11)
Texp(145 ns) 4737 4782 4643 4372
(346) (356) (153)  (297)
x2 3.44 3.13 3.05 3.55
169 511 6.58 6.53 549 éxp(198ns) 091 086 0.86
(0.18) (0.31) (0.33) (0.31) (0.27) (0.27) (0.18)
Tep(198 ns) 4522 4552 4555 4428
(263) (268) (178) (251)
x2 030 021 021 0.48
170 082 156 2.34 229 €xp(170ns) 101 1.04 1.06
(0.13) (0.17) (0.26) (0.26) (0.25) (0.25) (0.17)
Tep (170 ns) 3539 3508 3498 25390
(143) (141) (90) (143)
x? 1.61 143 1.42 1.52
196 135 214 296 324 €xp(485ns) 1.09 123 163
(0.48) (0.33) (0.42) (0.51) (0.44) (0.44) (0.26)
Tep(485 ns) 3695 3585 3422 3711
(243) (231) (100)  (247)
x2 1.99 120 1.03 1.72
197 137 3.18 346 3.74 €xp(4751ms) 151 151 138
(0.41) (0.39) (0.50) (0.56) (0.39) (0.39) (0.22)
Tep(475 ns) 3610 3610 3663 3866
(208) (208) (96) (239)
x? 0.50 _0.50 0.46 1.23

t - Golden section search fit. Uncertainties represent experimentally-based uncertainties, and

this fit is unweighted.

1 - Levenberg-Marquardt fit.
and this is a weighted fit.

Uncertainties represent standard deviations of corresponding fit,
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represent the observed radiation intensity, Iiexp(Mst), in terms of a model inten-

$itY, Ixmod(Mst), as a function of wavelength ()\), and time after the onset of radi-

ation from the target, t, i.e.,

I)\mod()"t) = Exx(t)I)‘pl[)‘iTx(t)] + E)s(t) IXpl()‘st) [3'1]'

In [3.1], T is the shock-compressed (Hugoniot) sample (S) temperature assumed
homogeneous, uniform and constant, and T\(t) is the temperature of Ag at the

Ag-sample interface (I), which may be time-dependent (Grover and Urtiew,
1974). Further,

&t) = [1-r sl Taes(t) [1-r\] 74(t) [1-r\pr] 3.2]

és(t) = ll'rxps] Tys(t) [l‘rxw] [1+rmvr ns(t)] [1- ws(t)] [3'3]

are the effective normal spectral emissivities of the Ag at the Ag-sample inter-
face and shocked sample, respectively, while ry, r,e and r,,,. are the effective

normal spectral reflectivities of the unshocked sample (US) free-surface, shock

front and Ag-sample interface, respectively. Also,
T\ts(t) = exp [“a;ts (l’t/t’exp)] [3°4]
and
7s(t) = exp[-at, t/texp] [3.5]
are the effective normal spectral transmissivities of unshocked sample and
shocked sample layers, respectively. In [3.4] and [3.5], a%s and af; are nondi-
mensional forms of the effective normal spectral coefficients of absorption in the
unshocked and shocked samples, respectively, given by
a;s = ay (U"'Vs)texp [3'6]

and

Bks = 8y Uty [3.7].
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Note that te,,;=d/U is the experimental time scale, U is the shock wave velocity
in the sample, d is the initial thickness of the sample layer in the target, and \A
is the shock-induced material velocity of the shocked sample. Lastly, we have

Cl
A ST _ )

Lipi(A\,T) =

(with C, = 1.19088X10"'W-m? and C, = 1.4388x107?m'K) as the Planck

function.

If we assume the shocked sample is strongly absorptive, we have ats >1 or
22 1/(d~Vetey) from [3.6], and so 7,(t)~0 from [3.5]. In this case, &(t)~0
from [3.2], and

&slt)—es=(1- Iws) (1 — ryg) 3.8]

from [3.3]. Note that & is then time-independent. Putting these results into
[3.1], we have

I)\mod()"t)—*l)\mod(x) ~(1- Nes)(1 - M) Ikpl()"Ts) = & IXpIO"Ts) [3-917

which represents a constant radiation intensity at a given wavelength, as
observed in the data (Figures 3.1 and 3.2). The minimum values of a,; required
by the condition ,s21/(d~Vste,) may be calculated from the experimental
parameters listed in Table 3.1. We list the results of this calculation in Table

3.1, where we see that, for crystal Di, 8,62>700-~1100 m~!, while for glass Di, we
have 2,,>420 m™!.

As the shock wave reaches the free surface of the unshocked sample (t in
Figure 3.1 or 3.2), the radiation radiation intensity again becomes transient, and
the experiment is over. Since we want to infer the shock-compressed tempera-
ture of the sample from the shock-induced sample radiation, and since [3.9] is
most likely valid for t~teyps We use the magnitude of the radiation intensity at

texp (Table 3.1, just prior to ty Figure 3.1 or 3.2) and each wavelength to
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constrain the temperature of the shocked sample. Assuming the spectral

reflectivities r and r,o. are independent of wavelength, [3.9] is analogous to the

greybody relation, i.e.,

I)\gb()"texp) = Efit(t’exp) I)\pl()“Tﬁt) [3'10]'

Comparing [3.9] and [3.10], we see that €gt(texp) should constrain the value of
(1-rs)(1-1,g). The value of texp reflects the calculated shock-wave transit time
through the sample, but is not critically dependent on this choice (Svendsen and
Ahrens, 1987) as long as the optical parameters of the unshocked material (e.g.,

a,,s) are not strongly wavelength-dependent. At t,, , then we measure the spec-
AUS exp

axr £+
, and we may fit

tral radiance at 4 wavelengths (450, 600, 750 and 900 nm)

Ingb(Mtexp) to these data via the x2 statistic (e.g., Press et al., 1986). In this

case, it is given by

X2(texp) = X2[texp;eﬁt!Tﬁt]
= ; { m { Ixexp(k’texp) - Eﬁt,(t'exp) Ikpl[)"Tﬁt(texp)] }2}[3'1117

where o()\) are the experimental uncertainties at each wavelength. On this
basis, &.,(texp) and Texp(texp) represent the values of €gt(texp) and Thi(texp) that
minimize x2(texp); in light of [3.8] and [3.9], this implies that €exp = &5 and
Texp = T, Since the fit is an average over )\, the value of €exp Tepresents a -
average of €. Since x? is a nonlinear functional of temperature, we find its
minimum numerically using 1) Golden section (GS) search, and 2) the method
of Levenberg as formulated by Marquardt (LM). See, for example, Press et al.
(1986), for details on both of these methods. To obtain starting values of &g(t)
and Tg(t) for the nonlinear fit, we use Wien’s approximation to I,y()\,T) in

x2(texp) which follows from Ixpi(X,T) in the limit exp(Cy/AT)>>1, i.e.,

2C;,
Tiwgb(Mt) = &gi(t) Lgi(ht) = 25,(t) —ks—‘ e G2/ A Talt) 3.12].
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We fit Wien's relation to the data via linear least-squares, and solve for &g,(t

and Tﬁt(texp).

exp)

We present the results of the greybody fit for the six experiments in Table
3.1, and we plot these results in Figures 3.3a-c. We note that, with 3 or 4 data
points and 2 parameters in each of these fits, a x? value of ~2 is representative
of a “good” fit; this value is very sensitive to measurement uncertainties, as can
be seen from [3.10]. In this case, the values of x? in Table 3.1 imply that we
may have overestimated measurement uncertainties. Also, note that Texp is
much less sensitive to uncertainties than €exps Biven the form of Iygb (Svendsen
and Ahrens, 1987). In Table 3.1, the uncertainties quoted with the GS fits
represent measurement uncertainties mapped into uncertainties for €exp(texp) and
Texp(texp) (Boslough et al., 1986). However, the uncertainty quoted with each
LM fit is the standard deviation of that fit. Note that the GS and LM fits for
shot 196, and the Wien, GS and LM fits for shot 197, give €exp Well above unity,
which is an unphysical result. As noted by Boslough et al. (1986), however, &g,
is much more sensitive to data scatter, whether due to uncorrected M-
dependences in the data, or experimental measurement errors. As can be seen
from the corresponding GS fits where égy, 1S set equal to one, the variable €g fits
for shots 196 and 197 may then underestimate the value of Texp by ~200 K.
Also note that the value of Eexp for all experiments and all fits is =>0.1, which
implies that we are observing relatively homogeneous radiation from the sample,
as opposed to localized, “‘shear-band”’ radiation seen in many shock-compressed
oxides and silicates at lower (< 70 GPa) pressure (e.g., Kondo and Ahrens,
1983; Schmitt et al., 1986). Although the constraint is very poor, we note that,
from the identification (1) (1T} 8 yp, as discussed above, Ne~0.1 with

Typs~0.1, for shots 140 and 141, at least.
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Figure 3.3. Spectral radiance versus wavelength and greybody fits constrajn-
ing &yp(texp) and Texp(texp) for shot 140 data. The size of the data
rectangles represents the experimental uncertainty. The data and

fits in parts (a), (b), and (c) are from shots 140, 169 and 197,
respectively.
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§4. Hugoniot Calculations and Comparison with Data

We calculate the density, p,, and pressure, B, of the shock-compressed Di
states, from an impedance match (Rice et al., 1958) between the target com-
ponents assuming a linear shock velocity, U, material velocity, v, relation, t.e.,
U =2a; + byv. For Ta, we use p*=16675 kg/m5, a,=—3290 m/s and b;=1.31
(Mitchell and Nellis, 1981), while for Ag, we use pi*=10501kg/m3, a,=3270 m/s
and b;=1.55 (Marsh, 1980). We assume that the U-v relation for crystal Di,
which is experimentally constrained to 100 GPa (Svendsen and Ahrens, 1983) is
valid to 170 GPa (Table 4.1). Since there are no U-v data for glass Di, we must
estimate the U-v coefficients for glass Di, a, and by, from those of the
corresponding crystal material, a, and b;,. With a;; and b;;, we may calculate
the impedance match for glass Di targets, and so estimate the experimental
glass Di Hugoniot states. Since the U-v relation represents a Taylor’s series

expansion of U(v) about the initial state v=0, a, and b; are defined by

b
a = il_;g{UQ} [4.1]
b= lim { ‘;—g} [4.2].

Now, we may connect U and v to P, via the relations

U= ——[p,- P [4.3]
i My
and
vi=Ju[p, B [4.4].

1

Using [4.1] and [4.2] in [4.3] and [4.4], and noting that the limit p—pi® is

equivalent to v—0, we obtain
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Table 4.1. Standard Temperature and Pressure (STP) Parameters.

Property Symbol Ta Ag CaMgSi,Og  Units
Density p 16676°  10501°  3277°¢ kg/m® |
Intercept, U-v relationt a  3290° 3270°  5620¢ m/s
Slope, U-v relation b 1.307% 1.55°¢ 1.27¢
Bulk modulus K 180.8° 109.6°  103.5° GPa
(9K/8P), K 4.23/ 520/ 408/
Coeflicient of thermal expansion o 1.8¢ 5.71 3.2% X107 K1
Specific heat at constant pressure Cp 140.2¢ 235.5¢ 769.0° J/kg'K
Gruneisen’s parameter v 1.4° 2.5° 1.3
Melting temperature T, 3287°¢ 1234¢ 1664°* K
Elastic Debye temperature 65 263.87 226.47  654F K

* Robie et al. (1978).

} Mitchell and Nellis (1981).

€ Marsh (1980).

¢ Svendsen and Ahrens (1983).
¢ Calculated assuming K =paZ.
I Calculated with Ki—=4b-1.

! Touloukian et al. (1975).

A Stebbins et al. (1983).

¥ Calculated from y=aK/pc,.
7 Alers (1965).

¥ Kieffer (1979).

ti.e., U=a+bv
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{ I dP“]}% [4.5)
. = im .
™ Pu—p” de
and
1 dinB
b= =11 lim H } .6
with
dPH
BH = pH{ de } [4.7].

We relate glass and crystal Di Hugoniot states at the same density, occupying

the same phase, via the relation (Appendix A)

(1—¢)[1-(1+%’7H)na] ¢P + pigle s
Pulo) = P, + 7 [4.8].

[1-(+gwng " -+,

Relation [4.8] depends on the assumption that ~, the equilibrium thermo-
dynamic Griineisen’s parameter, is a function of density alone. In [4.8],
W= Ng=1- Pig/py is the relative compression of the glass,
Ne = 1 - p;i¢/py is the relative compression of the crystal, ¢ = 1 - p;g/p;3 is the

“porosity,” and Ae 8 = e(p,2,s,2) - e(pig,sig) is the difference in specific inter-

nal energy between the glass and crystal in the low pressure phase at T and P.
Further, P, is the pressure of the glass Hugoniot state, P,, is the pressure of the
crystal Hugoniot state, Pig and s;g are the initial glass density and specific
entropy, and pg and s are the initial crystal density and specific entropy.

Since relations [4.1]-[4.7] are valid for any “hydrodynamic” starting material, we

have

= |lim

pw..[ de (4.9]
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big=l{1+ lim {[dl—“Bﬂ]}} [4.10)
4 P pig dlan

for glass Di, with P, given by [4.8]. Note that [4.7] relates the density deriva-
tives of F, to those of P,,, which we obtain from (McQueen et al., 1967)

pidaln
P,—P+ ic Ajc e -
(1 - bic"d&)

the so-called shock wave equation-of-state. So, via (4.8]-[4.10], we may calculate

[4.11].

a;g and by, as functions of Pigs Pics 3. and b;.. These then allow us to calculate
an impedance match for targets containing glass Di as the sample material, and
obtain an estimate of the glass Di B, p, state. We also use [4.8] to estimate the

pi{F) and so T(P,,) via [4.12] below.

The temperature of a singly shock-compressed material, T,, may be
estimated from an equilibrium thermodynamic energy balance (e.9., McQueen et
al., 1967; Ahrens et al, 1969; Jeanloz and Ahrens, 1980b; Chapter I, §4) in
which we assume the material compresses adiabatically, and as an elastic fluid.
On this basis, if we compress a material from an initial state (B,T) to a shock-
compressed state (P,T,), assuming the material undergoes a phase transition
from a low-pressure phase, a, to a high pressure phase, 8, the Hugoniot tem-
perature of the f-phase, T,, may be written
T,= T+ :1-{%{% - i}P},— [Ae,l+Aeiﬁ'°]} [4.12],

v pe Py
with n, = 1-p,*/p, being the relative compression. To write [4.12], we assume
that c,, the specific heat at constant volume of the shock-compressed state, is
independent of temperature, which is justified a posterior: by our results below.
The subscripts “i”, “H”, “S” and “V” designate initial, shock-compressed, con-
stant entropy and constant volume states of the material, respectively. Note

that all quantities in [4.12], and the expressions to follow, apply to the high-
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pressure phase, 8, unless otherwise designated. In [4.12], Ae?* is the difference
in specific internal energy between the two phases at T, and P, Aeg is the
change in specific internal of g compressed isentropically (at specific entropy s;)
from its density at STP, p, to a density p, (that of the shock-compressed state),
while T is the temperature of the material along the isentrope referenced to S;

and p;. Also, B, is the pressure of the shock-compressed state.

The temperature, Ts‘, along the compression isentrope may be estimated

from ~ via the relation

Ty=TEwd) =T exp{'y(pi) [1 - fi—] } [4.13],

since we assume ~p is constant in all model calculations. Lastly, we estimate
Ae, from the same energy balance used to obtain [4.12], the expression for T,
(Chapter I, §4).

Since we usually have values for Pigs Pic> 3, and b, a priori, and we can
estimate a;, and b;, as discussed above, we use these to calculate impedance
matches for targets containing crystal and glass Di. The impedance match gives
US pupbiy and py,F,. With these, we have T.(P,) and TP,y from [4.12], given
estimates of ri, v and ¢, for f, as well as Aefe (Aef- *+Ae;*® for the glass).

Requiring P,—P, as Pu—Pig, We have Ae 8 from [4.12], i.e.,

1

At = ——{(1 - Lyg)R - (- OO+ frenPulsd))

Pig’Yig
with n,,=1-p;¢/p;¢ and Yig = (pg)- In this case, T, for glass and crystal Di
starting materials depends on the basic unknowns pi» 7 and c, for the high-
pressure phase, f, as well as Ae*®. From [4.12], we see that the slope of T4(B,)
is controlled by the magnitude of ¢, while the initial value of T, is governed by
Aei?®. Further, from [4.12] and [4.13], we see that ~ influences T, via the

isentropic properties TSl and Aesl. In addition, ~ influences the Hugoniot
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temperature of glass Di through [4.8]. The density of 8 at T and B, p,
influences T, indirectly, but significantly, through (4.12], [4.13], and ~(p).

In Figures 4.1a-c, we display calculated Hugoniots for crystal and glass Di
that “fit” the shock temperatures constrained by the data discussed above. We
give a range of these Hugoniots based on a range of values for p, (3900-4300
kg/m?, Figure 4.1a), % = ~(p,) (1-2, Figure 4.1b), and Ae (0.4-1.4 MJ/kg for
crystal Di, and 1.8-2.8 MJ/kg for glass Di, Figure 4.1c) to demonstrate the sen-
sitivity of T, to these unknowns. In all these calculations, we assume that ¢y is
given by its classic lattice value, 3VR/M (Table 4.1). The experimental results
for the slope of T,(P,) for the crystal and glass Di Hugoniots suggest that this is
not an unreasonable assumption, although there are not enough data to rule out
a pressure-temperature dependent c, (e.g., Lyzenga et al., 1983; Boslough et al.,
1986). From previous work on the pressure-density Hugoniot of Di (Ahrens et
al., 1966; Svendsen and Ahrens, 1983), the range of possible p; values shown in
Figure 4.1a for HPP Di are based on mixed-oxide and perovskite models for
HPP Di. Comparing the results in these figures, we see that T, for crystal Di is
most sensitive to p;, followed by Aeip' * and then 4. For glass Dj, Ty may be
slightly more sensitive to 4; than Aeiﬁ‘ ?, but not really knowing a plausible

range of values for these parameters, we find it hard to say.

From the curves in Figures 4.1a and 4.lc, we note that the glass data
would also be satisfied by the combination of a lower initial density (3900
kg/m®) and lower value of Ae;?® (1.8 MJ/kg); this is also consistent with the
glass Di states representing liquid. Even if p;=~24100 kg/m?3 for glass Di, melting
is favored, considering the magnitude of Ae/#* (2.3 MJ/kg) needed to “fit”
these data. The magnitude of Ae for the ‘“best-fit” crystal Di Hugoniot (0.8
MJ/kg, Table 4.2) is of the same order as those estimated for some silicate and
oxide dynamic solid-solid phase transformations (e.9., 0.82 MJ/kg,
a-8i0,—stishovite, Lyzenga et al, 1983). If the glass data represent a solid-




Figure 4.1. Shock temperature versus pressure for crystal and glass Di, and
model Hugoniots for a range of values of (a) the STP density of
the high-pressure phase (HPP), p;, (b) the equilibrium thermo-
dynamic Gruneisen's parameter, 7, and (c) the difference in
specific internal energy between phases at STP, Aeiﬂ“".
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Table 4.2. CaMgSi,O4 STP parameters.

| Property  Symbol | cystal _ glas  Units |
U-v relationt

Density p 32774 2828% kg/m?3

Intercept a 5620°¢ 47754 m/s

Slope b 1.27° 1.28¢
High-pressure phase

Density p 4100° 4100° kg/m?

Intercept a 7826° 7826° m/s

Slope b 1.22¢ 1.22¢

Bulk modulus K 251/ 2517 GPa

(OK,/8P), K, 3.90¢ 3.90¢

Gruneisen’s parameter} y 1.5% 1.5%

Specific heat§ ¢ 1151.8 1151.8 J/kg'K

HPP-LPP energy difference Aefe 0.9% 2.3 MJ/kg

ti.e., U=a+bv. These relations are valid for v>2000 m/s.
1 py=constant assumed in all calculations.

§ Dulong-Petit value, used for ¢, in all calculations.

* Robie et al. (1978).

® Table IV.

° Svendsen & Ahrens (1983).

¢ from method in text.

¢ HPP U-v relation (Chapter I, §4).
! assuming Kg = pa?.

? (0Ks/8P)s = 4b-1 (Ruoff, 1967).
% from model calculations in text.
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solid plus melting transition, this implies a value for Aef* of = 1.5 MJ /kg for
melting of HPP Di. This compares, for example, with 1.6 MJ/kg estimated by
Lyzenga et al. (1983) for the stishovite—liquid SiO, transition. This line of
thought also leads us to believe that the glass Di data represent liquid Di, while
the crystal Di data represent a mixture of high-pressure oxide (B2-CaO, MgO
plus stishovite) and/or perovskite (CaSiO; plus MgSiOj3, or CaSiO; - MgSiO,

solid solution) phases.

§5. Discussion

In Table 5.1, we list the greybody fit and uncertainties, along with the cal-
culated shock-wave velocities, shock-transit times, pressure and temperature, for
each experiment. The values of €exp(texp) and Teyp(teyp) in Table 5.1 for shots
140, 141, 169 and 170 are those for the GS fit with ég, and Ty, variable, which
we choose as representative of the other estimates, within experimental uncer-
tainties. As discussed above, since €exp(texp) for shots 196 and 197 are
significantly greater than unity, we choose the GS fit with €gt set to one as the

“experimental results” for these shots as listed in Table 5.1.

We display the “best fit” Hugoniot to the present experimental results
(continuous curve) in Figure 5.1 along with other experimental results inferred
from radiation data for SiO, (Lyzenga et al., 1983), CaO (Boslough et al., 1986),
and MgO (Svendsen & Ahrens, 1987). Also shown are the mantle temperature
profiles of Brown & Shankland (1980) and Stacey (1977). These two models
represent the range of models currently considered plausible. The HPP Di
results fall between the CaO and MgO results, and well below those for stisho-
vite and liquid-SiO,. To first order, this is due to the differences in the STP
densities of the HPP’s of each material. MgO, which apparently does not
undergo any phase transformation below 200 GPa (Vassiliou and Ahrens, 1981;
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Table 5.1. Experimental Results and Model Estimates.

Experimental Results Calculated Results
Shot p d Vim  €axp Texp U v o ag ty Py T,
(kg/m®) (mm) (m/s) (K) |(m/s) (m/s) (m™) (ns) (GPa) (K)
140 3282 1.868 5983 0.57 4215 [11210 4403 880 167 162 4190
(6)t (0.010) (60) (0.23) (364)
141 3283 1.566 6143 0.90 4782 |11360 4518 1061 140 169 4524
(6) (0.010) (50) (0.20) (356)
169 3290 2.424 6048 0.97 4555 [11300 4448 681 192 165 4313
(5) (0.004) (40) (0.24) (268)
170 3289 1.870 5593 0.85 3508 [10850 4121 818 182 147 3590
(7) (0.010) (50) (0.14) (141)
196 2829 4.008 4673 1.00 3711 9678 3884 417 414 105 3660
(1) (0.004) (30) (0.44) (231)
197 2827 3.966 4729 1.00 3866 9733 3885 420 408 107 3795
(1) (0.001) (30) (0.39) (208)

1 - measurement uncertainty.
P - STP bulk density.

d - Sample thickness.

Vim - Impact velocity.

éexp - Experimentally-constrained greybody effective emissivity.

Texp - Experimentally-constrained greybody absolute temperature.

t; - Time during radiation history when Iexp used to constrain Texp and Eexp was read.

U - Calculated shock wave velocity through sample.

v - Calculated material velocity of shocked sample sample.

8 - lower bound to absorption coefficient of shocked sample.

tg; - Calculated shock wave transit time through sample.

P,, - Calculated shock-compressed pressure of sample.

TH - Calculated shock-compressed temperature of sample.



- 269 -

Figure 5.1. Experimental and model pressure-temperature Hugoniot results for
HPP Di, along with results for B2-CaO (Boslough et al., 1984),
MgO (Svendsen and Ahrens, 1987), and SiO, stishovite and liquid
(Lyzenga et al, 1983). Also shown are the mantle temperature
profiles of Stacey (1977) and Brown and Shankland (1980). The
vertical line marks the pressure of the mantle-core boundary
(135.7 GPa).
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Svendsen and Ahrens, 1987) has an STP density of 3583 kg/m3, B2-CaO has an
initial demsity of ~ 3800-4000 kg/m® (Jeanloz and Ahrens, 1980a; Boslough et
al., 1984), HPP solid Di is likely to have a slightly larger p, (==4100 kg/m3,
Table 4.3) than B2-CaO, as discussed above, and stishovite has an STP density
of =~ 4300 kg/m3. This is also true because the values of Aef~ for each
material are approximately the same. Since B2-CaO and HPP Di apparently
have very similar p;, other factors, such as compressibility (B2-CaO has a lower
bulk modulus than HPP Di: Jeanloz and Ahrens, 1980a; Boslough et al., 1984;
Svendsen and Ahrens, 1983), become important. B2-CaO is more compressible

than HPP Di, and so its Hugoniot temperature rises more quickly than HPP Di.

Low-pressure static studies of Di (e.g., Liu, 1979b) imply that CaMgSi,Of
may disproportionate into CaSiO; perovskite and MgSiO; perovskite above ~
20 GPa and 1000 C. Our results are not inconsistent with this, and yet we
really cannot distinguish between perovskite and mixed-oxide (or some combina-
tion) assemblage. The model we favor (Table 4.3) is more likely representative

of the perovskite mixture for CaMgSi,Og (Svendsen and Ahrens, 1983).

In comparison with the mantle temperature profiles displayed in Figure 5.1,
we note that both B2-CaO and HPP Di Hugoniot may be at about the same
temperature at the pressures of the lowermost mantle. We note that some of
the compositional models for the lowermost mantle (e.g., Ruff and Anderson,

1980), known as the D” region, contain significant amounts of more refractory

oxides and/or silicates (1.e., CaO, Al,O3, CaSiOj, etc..).

§6. Summary

Observed radiation from shock-compressed crystal CaMgSi,Og (Di) con-
strains Hugoniot temperatures of 3500-4800 K for this material in the 150-170
GPa pressure range, while glass CaMgSi,Og, with a starting density 879% that of
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crystal Di, achieves Hugoniot temperatures of 3600-3800 K in the 105-107 GPa
pressure range. The shock-induced radiation history for these materials implies
that both shock-compressed crystal and glass Di are strong absorbers
(a,6=2500-1000 m™!). Calculated Hugoniot states for these materials, in com-
parison with the experimental results, suggest that crystal Di Hugoniot states in
the 150-170 GPa range represent an HPP solid (or possibly liquid) phase with
an STP density of 41004200 kg/m3, STP Griineisen’s parameter of 1.54+0.5 and
STP HPP-LPP specific internal energy difference of 0.9+0.5 MJ/kg. These
parameters are consistent with either a Ca-Mg mixed-oxide or pervoskite assem-
blage. For glass Di, we have the same range of HPP properties, except that
Aeiﬁ“” is 2.3+0.5 MJ/kg, a strong indication that the glass Di Hugoniot states
occupy the liquid-phase of CaMgSi,Og, and that Aeiﬂ“’%l.SMg/kg for HPP-Di
melting. This value for Ae/# is similar to the shock-temperature results for
SiO, (Lyzenga et al, 1983). Comparison of the experimentally constrained
pressure-temperature Hugoniot of crystal Di with the experimentally constrained
Hugoniots of its constituent oxides (i.e., Si0,, CaO and MgO) demonstrates the
strong influence of the HPP, STP density of these materials on the magnitude
of the temperature in their shock-compressed states. The experimentally con-
strained crystal Di Hugoniot falls within the plausible range (2500-3000 K) of
mantle temperature profiles in the range of pressures (110-135 GPa) correspond-

ing to the lowermost mantle.
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Abstract

Measurements of the temperature of Fe under shock compression have been
performed to Hugoniot pressures of 300 GPa. The samples consist of thin Fe
films, 0.5 to 9.5 pum in thickness, or Fe foils in contact with a transparent anvil
of either single-crystal Al,O5 or LiF. Temperatures at the sample/anvil inter-
face are obtained by measuring the spectral radiance of the interface, for the
duration of the shock transit through the anvil, using a 4-color optical radiome-
ter. On the basis of our experimental data we conclude that a measure of the
sample Hugoniot temperature, as opposed to the temperature of the Al,O,
anvil, can thus be obtained. Our results further indicate that the AlyOg remains
at least partially transparent to pressures of at least 230 GPa and temperatures
of over 9,000 K. We obtain a melting temperature of Fe along the Hugoniot of
6700 + 400 K at 243 GPa. Taken together with recent determinations of melt-
ing temperatures to 100 GPa (Williams et al., 1987), our results place an upper
bound on the temperature at the inner core-outer boundary of 7800 + 500 K.

§1. Introduction

The properties of matter at exceedingly high degrees of compression may
be investigated using shock wave techniques. In a typical equation-of-state
experiment it is usual to determine the shock velocity (U), material or particle
velocity (v), and the differences in pressure (P), specific volume (v), and internal
energy (E) between the initial state and the shock-compressed state. The tech-
niques used to perform such experiments are relatively well developed and have
been described in many articles published over the past two decades. However,
the above mentioned parameters do not by themselves give a unique thermo-
dynamic description of a material in the shock-compressed, or Hugoniot state.
In particular, the temperature along the Hugoniot, or locus of shock-compressed

states, is generally undefined. Using modern shock wave techniques, pressures on
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Figure 1.1. Schematic diagram illustrating the effect of a phase boundary with

positive Clayperon slope, dP/dT, upon the equilibrium Hugoniot
temperatures.
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the order of several hundred GPa, corresponding to those of the Earth’s lower
mantle and core, are easily attained in solid samples. The concomitant tempera-
tures reached in these experiments are generally many thousands of Kelvins. In
order to apply the results of shock wave experiments to states off the Hugoniot,
for example adiabats or isotherms, it is necessary to either measure or calculate
Hugoniot temperatures achieved during shock loading. Although Hugoniot tem-
peratures may be calculated, this procedure is subject to large uncertainties
because of imperfect knowledge of thermal properties such as Gruneisen’s

parameter and the specific heat.

An additional motivation for performing shock-temperature measurements
is to identify the existence of phase transitions along the shock compression
curve. It has been found that many phase transitions, especially those involving
only a small density change, are not obvious in terms of Hugoniot parameters,
and are manifest only as subtle changes of slope in the U-v or P-v Hugoniot
relationship of a given material. However, such phase transitions may have a
more pronounced signature in the T-P plane. When the Hugoniot intersects a
phase boundary there will be, in principle, a substantial offset, or discontinuity
in the Hugoniot T-P curve (Kormer, 1968). As shown in Figure 1.1, the
Hugoniot will coincide with a phase boundary over some pressure interval,
which is determined by the amount of energy needed to drive the transition to
completion. Such behavior has been inferred from shock-induced radiation data

on NaCl (Kormer et al., 1965; Ahrens et al., 1982).

In this paper we present the results of our initial attempts to measure the
temperature of Fe under shock loading, using a 4-channel optical radiometric
technique. Although similar measurements have been made on a variety of
transparent materials in recent years, the extension of this methods to opaque
materials has a number of serious experimental difficulties, which will be dis-

cussed below. To the best of our knowledge, the results summarized in this
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paper represent the most extensive data set obtained to date on the tempera-
ture of a shock-compressed opaque material. We have chosen Fe for our initial
experiments because of its geophysical importance as a probable major constit-

uent of the earth’s core.

§2. Experimental Method

All of our experiments were performed using a two-stage light-gas gun
(Jones et al., 1966; Jeanloz and Abhrens, 1977), in which lexan projectiles bearing
Ta flyer plates were accelerated to velocities of up to 6.5 km/s. Impact veloci-
ties were measured by taking two flash X-radiographs of the projectile in flight,
and are known to better than 0.5% accuracy. Pressures in each part of the sam-
ple assembly, which will be described in detail below, were calculated using the
impedance matching method (Rice et al, 1958). Necessary equation-of-state
parameters are given by Mitchell and Nellis (1981, Ta), Brown and McQueen
(1986, Fe), Carter (1973, LiF), and the 19 highest pressure data points listed by
Marsh (1980) for Al,Oj.

The basis of the experimental method used in our study is to record the
spectral radiance emitted by the sample when it is shock-compressed to high
pressure and temperature. Assuming that the sample emits light as a greybody,

data obtained at several discreet wavelength bands may be fit to the function
L(\)=€C )\ (exp(Co/\T) -1)! [2.1],

where L, the spectral radiance, is the observed quantity in the experiment. In
each experiment, data are obtained at the four wavelengths 450, 600, 750 and
900 nm, and using [2.1], values for the temperature and emissivity are obtained
by a least-squares regression. This technique was initially developed by Kormer
et al. (1965), who used a two-color pyrometer to determine the Hugoniot tem-

perature of transparent samples. Later versions of this instrument employing six
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or four channels in the visible portion of the spectrum were designed by

Lyzenga and Ahrens (1979) and Boslough (1984), respectively.

In our experiments we have used the optical recording apparatus designed
by Boslough (1984), a schematic diagram of which is shown in Figure 2.1. Light
emitted by the sample is directed to a collimating lens by an expendable front
surface mirror. The lens is positioned at one focal distance (50 cm) from the
sample. The collected light is then separated into four parts by way of three
beamsplitters, is demagnified and focused onto four photodiodes. The image of
the sample is far smaller than the active area of the photodiodes, so that the
photodiodes do not have to be positioned with a high degree of precision. An
interference filter is situated in front of each photodiode to pass only a limited
band (=40 nm FWHM) about each desired central wavelength. The output
voltage of each photodiode is amplified and recorded on an oscilloscope and a
high-speed digital recorder, thus providing redundancy in each measurement
and a backup of each channel. Further details of the system are given by

Boslough (1984).

For shock temperature experiments on opaque materials, the construction
of the target assembly is of critical importance. As shown in Figure 2.2, the
main components of the assembly are a 0.5 mm thick Fe driver plate, either a
film (<10 pm thick) or foil (30 #m thick) of Fe, which is the actual sample, and
a 16X3mm thick disc of single-crystal sapphire or LiF. The sapphire serves
both as an anvil, to maintain the Fe sample at high pressure after the shock
front traverses the Fe-Al,O; interface, and as a window through which thermal
radiation must be transmitted during an experiment. Therefore, the criteria that
are important in choosing an anvil/window material are that it have a shock
impedance as close as possible to that of the metallic sample, thereby minimiz-
ing release or reshocking of the sample upon arrival of the shock at the inter-

face, and that the anvil remain transparent when shocked to high pressures.
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Figure 2.1. Diagram of the main components of the shock temperature meas-
urement system. The path of light radiated by the sample is indi-
cated by the dashed lines. Each of the four channels (CH#) in
the radiometer consists of an interference filter, a lens for demag-
nifying the image, a photodiode, and an amplifier.
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Flgure 2.2. The target used in shock temperature experiments on opaque sam-
ples. A foil may be used as a sample in place of the film. A
schematic diagram of the temperature profile in various parts of
the assembly is shown at the bottom of the figure.
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One general conclusion from optical studies on shocked materials in this and
several other laboratories is that initially transparent materials seem to radiate
as blackbodies, or greybodies with emissivities close to 1, when shocked above
phase transition pressures. This implies that the occurrence of phase transitions
along the Hugoniot tends to yield an opaque material. Therefore, we have fol-
lowed the strategy of Lyzenga and Ahrens (1979), and Urtiew and Grover (1977)
and chosen Al,O; as our primary anvil material because it does not undergo any
known phase transitions along the Hugoniot. We note, moreover, that Al,O,4
has been observed to remain transparent to static pressures in excess of 500
GPa (Xu et al., 1986) and under dynamic loading to at least 100 GPa (Urtiew,
1974). Al,O4 also provides the optimal impedance match to Fe out of all poten-

tial window materials.

Urtiew and Grover (1974) have performed a theoretical analysis of the heat
generated at the interface between a sample and a window upon passage of a
shock wave through the interface. These authors considered the effects of two
types of interface imperfections: a small uniform space or gap between the two
materials, and roughness, or topography on the surface of the opaque sample.
In the first case the metal sample has a free surface at which, upon arrival of
the shock front, the material is released to atmospheric pressure and some
elevated temperature in a near adiabatic fashion. The hot, released material at
the surface subsequently impacts the anvil surface, thus reshocking the sample
to high pressure and a temperature that is greater than would be attained along
the principal Hugoniot of the sample. The case of surface roughness was treated
as a layer of porous sample material adjacent to the anvil, again leading to tem-
peratures at the interface that are higher than the Hugoniot temperatures of

either the anvil or a perfectly dense sample.

From the above studies it is clear that in order to measure an interface

temperature that is directly related to the Hugoniot temperature, the sample
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must be in near perfect contact with the window. This was experimentally
verified by Lyzenga and Ahrens (1979), who performed shock temperature meas-
urements on Ag using three different target configurations. They found that the
direct impact of an Ag projectile onto a Al,0O; window, and the use of a Ag foil
wrung onto the anvil, led to transients in the spectral radiance versus time data.
A sample of vapor-deposited Ag on an Al,O3 substrate gave a much more stable
signal. Base upon the experience of Lyzenga and Ahrens with Ag, we decided to
prepare samples with vapor deposition using a Varian electron beam evapora-
tive coating system. This technique maximizes the chances of obtaining a
flawless contact between the sample and window on an atomic scale, thus obvi-
ating any thermal signal due to an interfacial gap. However, as discussed later,
our data indicated that ideal interface conditions were attained in only a frac-
tion of the samples. Fe was deposited under a total vapor pressure of 3X10~7
torr at a rate of approximately 25 angstroms per second. Films with
thicknesses of 0.5 um ( in the first successful run) to 9.5 um were produced. A
calibrated crystal oscillator with a characteristic frequency that changes as a
film is deposited upon it, was positioned near the substrate to monitor the depo-
sition rate and final film thickness. Our experience has been that Fe adheres
poorly to Al,03, and a majority of the films would peel off of the substrate
either during, or a short time after, coating. This problem became more severe
as we tried to increase the film thickness, but was somewhat alleviated by

extremely thorough cleaning of the substrate prior to coating.

The thickness of the sample film is an important consideration in this
experiment. Because the interface between the driver and film sample cannot be
perfect, there is a possibility of significant heat production for the reasons dis-
cussed above. If a film is too thin, this heat could diffuse to the sample/anvil
interface on the time scale of the experiment, thus yielding an erroneously high

temperature that increases with time. It was not possible to determine a prior:
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what a safe minimum film thickness would be, since we have little or no infor-
mation on the appropriate thermal properties at elevated temperatures and
pressures. Therefore, we simply tried to obtain as thick a film as possible and
found 9um to be the approximate upper limit of our techniques. Our experimen-
tal data indicate that this thickness is satisfactory, because the shot records
show no consistent evidence for heat diffusion to the sample-anvil interface. In
fact, most of our records showed a light decrease in the intensity of light as the
shock front progressed through the window. This is most easily interpreted as a

change in the optical properties of the window material under shock loading.

As a source of Fe for the films and driver plates we used a low carbon steel
(““Cor 99", Corey Steel Co., Chicago, IL), with a total impurity content of less
than 0.12% (analysis supplied by the manufacturer). The density was measured
by the Archimedian method to be 7.84+0.02 gm/cm?, just slightly lower than
the x-ray value of 7.874gm/cm® (Berry, 1967). In the last film experiment, a
commercial Fe powder of nominal 99.9% purity was used. The Fe film from one
sample was peeled off the substrate and examined by X-ray powder
diffiractometry. A well-defined peak corresponding to the most intense (110)
diffraction maximum of a-Fe was found, indicating that the films are highly

crystalline rather than in an amorphous state.

The vapor deposition method is an extremely time-consuming method of
preparing samples. As an alternative, we investigated the possibility of using
thin Fe foils as samples in five experiments. Fe foils of 0.03 mm thickness and
nominal 99.99% purity were obtained by Alfa Products and used as samples in

this series of shots.
§3. Results

Figure 3.1 shows the raw oscillographic data from one of the shock tem-

perature experiments. A noteworthy feature of these record is that there is no
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evidence of a ‘‘spike,” or strong transient in light intensity when the shock
reaches the interface, or the thermal relaxation of a thin Fe layer, which is
extremely hot due to porosity. It is also important to note that the voltage, or
intensity of light, is nearly constant in time, indicating that thermal diffusion
from the driver/film interface to the film/anvil interface is probably not
significant. All of the voltage records from the experiments at higher pressures
showed a modest to a rapid decrease in light intensity with time, although no
spikes were observed. One interpretation of the decrease in light intensity is
that the sapphire anvil is appreciably absorbing in the optical range above pres-
sures of about 225 GPa. Only experiment #167 (Table 4.1) at 196 GPa exhi-
bited a modest increase of light intensity with time, and the reason for this

behavior is as yet unresolved.

The spectral radiance values obtained from the voltage data of Figure 3.1
are plotted in Figure 3.2. Because the spectral radiance is never precisely con-
stant as a function of time, it is important to consider that part of the voltage-
time record is appropriate to use for obtaining a Hugoniot temperature. We
have chosen to read the initial part of each record, just after the sharp increase
in voltage which corresponds to arrival of the shock at the interface. In this
way We obtain a measure of the thermal radiance of the sample viewed through
unshocked, transparent anvil material. This choice should minimize potential
problems due to light absorption by the anvil, diffusion of heat from the
driver/sample interface to the sample/anvil interface, and contributions to the

signal by the shocked anvil.

For the purpose of transforming the observed voltages to a temperature, it
is necessary to calibrate the pyrometer with a standard light source. As
described by Boslough (1984), we use the chopped signal from a tungsten lamp
of known spectral irradiance (Optronics Laboratories, Orlando, Florida). The

resulting experimental values of spectral radiance may then be fitted to a
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Figure 3.1. Oscillographic record of voltage as a function of time for one of
the shock temperature experiments. The amplitude of the voltage
above the baseline seen in the initial =~ 400 ns of the record, is
proportional to the spectral radiance at the sample/anvil interface.
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radiation function, such as Planck’s Law, to obtain the temperature and emis-
sivity of the sample-anvil interface. In Figure 3.2 we show least squares fits to
the data using the emissivity obtained by regression, and also a value of unity
as appropriate for a black body. It is clear that the data are described far
better by using a greybody (emissivity£1) rather than a blackbody function;
this is quantitatively expressed by emissivity values that are statistically
different from one (Table 4.1). The errors shown in Figure 3.2, and listed in
Table 4.1 for the interface temperature, take into account the estimated uncer-
tainties in reading the baseline and signal voltages on the oscillograms (or tran-
sient recorder plots), the calibration voltages, the spectral irradiance of the cali-

bration lamp, and diameter of the mask aperture.

The data from our experiments yield temperature values for the sample
material at the interface with the anvil. In order to obtain the Hugoniot tem-
perature of the sample, it is necessary to correct the interface temperatures for
two effects: the influence of the relatively cold anvil, and partial release of the
Fe due to the impedance mismatch of the sample and anvil materials. In the
ideal situation where the sample has no porosity and is in perfect contact with
the anvil, it has been shown (Grover and Urtiew, 1974) that the interface tem-
perature T, is independent of time and is related to the temperature of the

released sample, T,, by

(Ta - Tr)
T=T,+ (14a) [3.1].
Here, T, is the Hugoniot temperature of the anvil, and « is given by
e [Da)? [ mpCe 2
a={—11=1 = =L [3.2],
'ca. DI’ K‘apaoa

where k£ and D are thermal conductivity and diffusivity, respectively, p is den-

sity, C is the specific heat, and the subscripts r and a refer to released Fe, and
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Figure 3.2. The data from Figure 3.1, and additional data from digital record-
ers, plotted in terms of spectral radiance versus wavelength. The
solid curve is obtained from least-square regression for both tem-
perature and emissivity using Planck’s Law; the dashed curve is
the least-squares solution for temperature alone with the emis-
sivity fixed at unity.
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Hugoniot state of the anvil, respectively.

The thermal properties needed to evaluate a in [3.2] have not been meas-
ured under the extreme P and T conditions of our experiments, and o must
therefore be estimated from available data and theory. For the anvil materials,
we first evaluate the effect of temperature on the lattice contribution to the
thermal conductivity, k,(P,T). Low-pressure conductivity data were fit to
expressions of the form £(0,T)=A;+B,/T yielding coefficients of
A1=2.599 W/m'K, B;=1.176X10' W/m for Al,O; (Kingery et al, 1954), and
A,;=-0.2023, B,;=3.671X10° for LiF (Men’ et al, 1974). These equations
allowed for calculation of #£,(0,T) at the anvil Hugoniot temperature. The effect
of pressure on the anvil conductivity was then calculated using the Debye-
Gruneisen approximation ok [k=16p/p, presented by Roufosse and Jeanloz
(1983). In order to evaluate this last expression, the anvil density at 0.1 MPa
and the appropriate Hugoniot temperature is obtained from the thermal expan-
sivity in the form dinp/dT=A,+B,T. Values of A,(298K)=9.8X10"K-1 and
B,=1.2X10"7K~2 were used for LiF (Pathak and Vasavada, 1972; Rapp and
Merchant, 1973), and A,=1.62X10°K"!, B,=1.1X10%K™2 for Al,O4
(Touloukian et al., 1975). Finally, the heat capacity of the anvils was approxi-
mated by the high-temperature Dulong-Petit limit, whereas the Hugoniot den-

sity was determined from the Rankine-Hugoniot relations.

The thermal properties of Fe needed in [3.2] refer to a partially released
state if the shock impedance of the anvil is lower than that of Fe, as is true for
Al,O3 and LiF. The released density was calculated using the method of
Lyzenga and Ahrens (1978), while the heat capacity was assumed to be the
Dulong-Petit value plus an electronic contribution as given by Brown and
McQueen (1986). The incorporation of an electronic contribution to C, does not

affect the corrected Hugoniot temperatures (Figure 4.1) by more than
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approximately 50 K. In order to obtain the thermal conductivity of Fe we chose
a different approach than that used for the anvil material. Experimental data
have been obtained for the electrical conductivity, o, of Fe under shock condi-
tions by Keeler (1971). Electrical conductivity can, in turn, be related to the

thermal conductivity of metals via the Wiedemann-Franz relation
x=LoT [3.3],

where L, the Lorentz number, has a relatively constant value of about
2.45X10°W-Q/K? for most metals. A linear least-squares regression of o versus
compression, p,/p, yielded an excellent fit with a correlation coefficient of
-0.992, The data used were taken from Matassov (1977, fig.
7.4). Knowing the compression of Fe in the release state, we obtain «, for Fe by
assuming that the temperature of the released Fe, needed in the Wiedemann-
Franz relation, is given by the observed interface temperature T,. A value of o
is calculated using [3.2], thereby allowing an initial value for the released tem-
perature, T\, to be determined by [3.1]. The entire procedure was repeated itera-

tively, using T, in [3.3] to obtain an improved value of K, and then recalculat-

ing T,, until T, converged to a stable value.

At this point in the data reduction we have the temperature of Fe in a par-
tially released state of lower pressure than the Hugoniot. To obtain the
Hugoniot temperature, it is necessary to correct for the effects of partial release,

which we do by using the relation

r

v
T,=Tyexp) - f (v/v)dv
v
h

where ~ is the Gruneisen parameter of Fe. We assume a constant value of
~p=16.7 gm/cm?® (Brown and McQueen, 1986) and obtain the released volume,
vy, using the method of Lyzenga and Ahrens (1978). Further details of these
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calculations, as well as theoretical Hugoniot temperature calculations, are given

by Svendsen et al. (1987; ChapterI, § 4).

§4. Discussion

A complete summary of our results is given in Table 4.1. Perhaps the most
important point to be made is that we have obtained a wide range of inferred
Hugoniot temperatures of between = 6,000 to over 11,000 K. Because the calcu-
lated Hugoniot temperatures of Al,O; are lower by several thousand degrees
(Table 4.1 and Svendsen et al., 1987), these data represent compelling evidence
that the temperature of the opaque sample, as opposed to that of the anvil
material, is measured using the technique employed in this study. Although
anomalously high temperatures have previously been measured for insulators
under shock compression (e.g., Schmitt and Ahrens, 1984), this appears to be a
relatively low-pressure phenomenon related to localized “‘shear band” deforma-
tion of the sample, which is not operative at high (=100 GPa) pressures. More-
over, the high “‘shear band” temperatures are usually typified by emissivities at
least one order of magnitude smaller than those measured in the present study.
We conclude, therefore, that we are in fact able to record the temperature of Fe
in a shock-induced, high-pressure state. This also implies that the Al,O3 anvil
remains at least partially transparent under P and T conditions defined by the

Hugoniot pressure in the anvil and the interface temperature (=230 GPa and

7000-9000 K).

It is apparent from Table 4.1 that the range of inferred Hugoniot tempera-
tures are larger than would be expected from the precision of the data. More-
over, it is equally clear that most of the obvious possible sample defects, such as
an imperfect sample-anvil interface or sample porosity, would yield anomalously
high temperatures. Thus, the lowest observed temperatures should most closely

approximate the true Hugoniot temperatures. In Figure 4.1 we have plotted our
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Table 4.1. Results of Shock Temperature Measurements on Fe

Shot Sample Anvil Py (GPa) P, (GPa) T;(K)}} T,(K) T, (K)
No. Type Fe Anvil Interface Anvil Fe
167 Film Al,O, 196 157 4750 1340 6110 0.29
' +420 +.14
189 Foil Al,O4 202 161 4010 1380 5200 0.29
+420 +.14
173 Film ALO; 226 178 6240 1550 7910 0.33
+170 +.05
190 Foil LiF 227 122 4680 2790 618C 0.38
+420 +.19
188 Foil Al,O4 241 188 5390 1660 6870 0.10
+740 +.6
191 Film Al,O4 244 190 6990 1680 8950 0.47
+350 +.15
183  Foil AlLO; 245 191 6970 1690 8920 0.34
+280 +.07
157 Film ALO, 251 195 6380 1730 8200 0.70
+300 +.12
159 Film LiF 263 140 5270 3410 7240 0.96
+280 +.22
192 Film Al,O, 263 203 9220 1820 11610 0.29
+800 +.30
174 Film Al,O4 268 207 7580 1860 9670 0.46
+420 +.13
181 Foil Al,O,4 276 212 9300 1920 11730 0.32
+550 +.14
168 Film ALO; 300 228 6990 2090 8930 0.86
+330 +.16

tunweighted fit.
te = effective emissivity
All Hugoniot pressures (Py) are measured with a precision of better than +1

GPa. Note that P}, for the anvil is also the pressure in the partially released Fe
after the shock wave enters the anvil.
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Figure 4.1. Hugoniot temperatures, deduced from our experimental data, as a

function of pressure. The heavy solid line and filled symbols are
from the present study. The dashed curves are calculated
Hugoniot temperatures that differ mainly in the assumptions made
about the specific heat of Fe: McQueen et al. (1970) assume
Csbs6V=3R, whereas Brown and McQueen (1986) incorporate an
additional electronic term. The melting curve is consistent with
our shock temperature measurements as well as the melting. Data
of Williams et al. (1987) obtained in the diamond anvil cell at
pressure up to 100 GPa. Pressures at the core-mantle (CMB) and
inner core-outer core (ICB) boundaries are indicted.
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interpretation of the Fe Hugoniot temperatures based upon the data obtained
thus far. Also shown in Figure 4.1 are the calculated Hugoniot temperatures of
Brown and McQueen (1986), which take into account possible electronic contri-
butions to the specific heat of Fe, and the Hugoniot temperature calculations of
McQueen et al. (1970), which do not include these effects. Electronic contribu-
tions increase C, and thus lower the Hugoniot temperature at any given pres-
sure (see Brown and McQueen, 1986). The fact that our lowest temperature
datum define a P-T trend intermediate between these two theoretical bounds

strongly suggests that these data represent the true Hugoniot temperatures of
Fe.

Brown and McQueen (1986) have, on the basis of sound velocity measure-
ments, identified two phase transitions along the Hugoniot of Fe at pressures of
200 and 243 GPa; these are inferred to represent ¢~y and ~-melt transitions,
respectively. The lowest pressure data in Figure 4.1 exceed 200 GPa and we
therefore cannot tell whether or not the € to ~ transition has any resolvable
effect on the P-T trajectory. However, there is a suggestion of an offset in the
Hugoniot temperatures above 241 GPa (Figure 4.1) that is analogous to the
effect shown schematically in Figure 4.1. Thus, our data are consistent with the
interpretation of the Hugoniot intersecting a melting curve of positive slope at
242 GPa, as suggested by Brown and McQueen (1986) and shown in Figure 4.1.
This interpretation of our data indicates a thermal offset of the Hugoniot of

approximately 450 K, in very good agreement with the estimate of 350 K by
Brown and McQueen (1986).

We are currently unsure as to why some of the experimental data yield
anomalously high temperatures (Table 4.1). Although great care was taken to
produce suitable sample assemblies in a consistent manner, we can only con-
clude that many of the samples were defective in some way. As discussed in a

previous section, the obvious possibilities are an interfacial gap between the foil
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sample and the anvil, and porosity of the films. We have calculated the tem-
peratures that would be expected in Fe for the case of an uniform interfacial
gap and obtain values that far exceed our observed range of inferred Hugoniot
temperatures. For example, at 250 GPa, the temperature of Fe which has been
released to atmospheric pressure from the Hugoniot state and reshocked upon
impact with a Al,O3 anvil is calculated to be 16,700 K. This value is much
larger than the values of 8,200-11,700 that were experimentally observed at
similar pressures. Therefore, we conclude that none of our foils were separated
from the anvils by a uniform gap, although imperfect contact over a fraction of
the sample area could have produced the high temperatures observed in some

foil shots.

of our

It is also possible that heat generated at the driver plate-sample interfac_e
was able to diffuse through the sample on the time scale of the experiment.
We tested this hypothesis by performing two experiments (#191 and #192)
with thin film samples. These samples were sufficiently thin to transmit visible
light and assured us of detecting a portion of the light generated at the driver-
sample interface, which should be at a much higher temperature than the
Hugoniot state of Fe (see Figure 2.2). These experiments yielded much higher
temperatures (Table 4.1) than those shown in Figure 4.1. Coupled with the
observation that the shot records (Figure 3.1) did not show and increase of volt-
age with time, indicating no heat diffusion toward the sample-anvil interface, we

rejected this as an explanation of the high temperatures observed in many of

the shots.

Because of the small mass and delicate nature of the film samples, we have
not yet been able to measure the porosity of the films. Therefore, we cannot
rule out the possibility of a variable amount of porosity from one sample to
another to explain the discrepancies between the results in Figure 4.1, and the

higher temperature data listed in Table 4.1. Nonetheless, we maintain that the
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interpretation shown in Figure 4.1, the set of lowest shock temperatures
representing the Hugoniot temperatures of Fe, is reasonable and the most logi-
cal conclusion to be drawn based on available data. It is noteworthy that the
data shown in Figure 4.1 consist of several types of sample assemblies: both foils
and films on both Al,O3 and LiF substrates. As discussed above, each of these
sample configurations has a different experimental problem associated with the
construction of a suitable target: the foils are most likely to be plagued by inter-
face gaps, while the films are observed to be in perfect contact but may be
slightly porous. However, it is significant that the data in Figure 4.1 tightly
define a Hugoniot P-T trajectory that is within the range of previously calcu-
lated theoretical bounds, and is also wholly consistent with the presence of a
melting transition that has been identified by an independent experimental
technique. It is highly unlikely that experiments using different types sample
assemblies would be in error by the same amount. Such a situation would
require that the excess temperature produced by interfacial gaps in the foil
shots be equal to the excess temperature produced by porosity in the film shots.
We prefer the simpler explanation that the data shown in Figure 4.1 are the
Hugoniot temperatures of Fe. This is further supported by the agreement of the
shock-temperature data with independent measurements of the melting tem-
perature of Fe under static conditions in a diamond anvil cell (Williams et al.,

1987).

Our shock-temperature data constrain the melting point of Fe along the
Hugoniot to be 6700+400 K at a pressure of 243 GPa. This value is significantly
higher than the recent estimate of 5000-5700 K by Brown and Mc Queen (1986),
and suggests that electronic contributions to the specific heat of Fe may not be
as significant as assumed in their calculations (see also Boness et al., 1986).
When combined with the melting experiments under static pressures to 100 GPa

by Williams et al. (1987), we obtain a melting curve for Fe as shown in Figure
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4.1. This curve indicates that Fe melts at temperatures of 4800+200 K at 136
GPa, the pressure at the core-mantle boundary, and 7800+500 K at 330 GPa,

the inner-outer core boundary pressure.
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Abstract

Liquid-state and solid-state model fits to melting data for Fe, FeS and FeO
provide constraints for calculating ideal phase relations in Fe-FeS and Fe-FeO
systems in the pressure range corresponding to the earth’s outer core. The
liquid-state model fit to the Fe melting data of Williams and Jeanloz (1986)
places constraints on the temperature and other properties along the liquidus
above the range of their data. The temperature along the best-fit Fe liquidus is
5000 K at 136 GPa and 7250 K at 330 GPa, which is somewhat lower than that
implied by the Hugoniot results (~ 7800 K). This discrepancy may be due to
the reshock effect discussed above, or some inaccuracy in the extrapolation,
presuming the Hugoniot results represent the equilibrium melting behavior of
Fe. Constraints on the solidi of FeS and FeO from the comparison of data and
solid-state model calculations imply that FeS and FeO melt at approximately
4610 K and 5900 K, respectively, at 136 GPa, and approximately 6150 K and
8950 K, respectively, at 330 GPa. Calculations for the equilibrium thermo-
dynamic properties of solid and liquid Fe along the coincident solidus and
liquidus imply that the entropy of melting for Fe is approximately independent
of pressure at a value of approximately R (where R is Ryberg’s constant), while
the change in the molar heat capacity across the transition increases with pres-
sure from approximately 0.5 R to 4R between standard pressure and 330 GPa.
We use these constraints to construct ideal-mixing phase diagrams for Fe-FeS
and Fe-FeO systems at outer core pressures, assuming that Fe and FeS, or Fe
and FeO, respectively, are the solid phases in equilibrium with the liquid Fe-FeS
or Fe-FeO mixtures, respectively. Calculated Fe-FeO eutectic compositions at
330 GPa (15-20 mole % O) are less than 25 mole % O, while calculated Fe-FeS
eutectic compositions at 330 GPa (23-30 mole % S) are generally greater than
25 mole % S. Combined with density considerations, these calculations imply

that an O-rich outer core is more likely to lie on the FeO-rich side of the Fe-
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FeX eutectic, while an S-rich outer core is more likely to lie on the Fe-rich side
of the Fe-FeX eutectic. In addition, eutectic temperatures in both systems are
are 2> 5000 K at 330 GPa. Widely accepted temperature profiles for the outer
core, ranging from <3000 K at the 136 GPa, the core-mantle boundary, to
<4200 K at 330 GPa, the outer-inner core boundary, are about 1000-1500 K
below this value. In the context of the outer-inner core boundary-phase boun-
dary hypothesis, this discrepancy implies that at least one boundary layer of
1000-1500 K exists in the mantle, possibly at its base in the D'’ region.

§1. Introduction

Temperature is perhaps the most influential and elusive of all thermo-
dynamic fields defining the physical state of terrestrial planetary interiors.
Being fundamental to the thermomechanical behavior and evolution of these
interiors (e.g., O’Connell and Hager, 1980; Janle and Meissner, 1986), it has
been a central part of innumerable modeling efforts (e.g., Stacey and Loper,
1984). Unsupported by independent means, however, the value of this modeling
is somewhat ambiguous. High-pressure and temperature experimental work on
cosmochemically or physically plausible constituent materials, such as Fe and its
alloys (e.g., FeS and FeO), has the potential to constrain the complete equilib-
rium thermodynamic ‘‘equation-of-state” of these materials and provide such
independent constraints. In this paper, we discuss some implications of recent
static (Fe and FeygS, Williams and Jeanloz, 1986; FeO, Knittle and Jeanloz,
1987) and dynamic (Fe, Bass et al, 1987; Feq ¢S, Anderson et al., 1987) experi-
ments, and their potential impact on the question of the temperature profile in
the earth’s outer core (OC), and the temperature of the inner-core boundary
(ICB).

Birch (1952) first noted that his uncompressed density profile of the core
was ~ 10-15% less than that of pure Fe (or Fe-Ni: McQueen and Marsh, 1966)
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along its Hugoniot at corresponding pressures. Knopoff and MacDonald (1959)
suggested that Birch’s observation implied that Fe must be combined with one
or more elements, X; (e.g., H, He, C, N, Si, O and/or S), of significantly smaller
atomic number, in the core. This possibility has since accreted a vast literature
(see Jacobs, 1975; Ringwood, 1979; Stevenson, 1981) concerned with candidate
X and their potential role in core formation, dynamics and evolution through
phase relations in the Fe-X; system. The relevance of high-pressure, high-
temperature experiments toward constraint of the temperature profile in the OC
rests on the hypothesis (Verhoogen, 1961) that the inner core (IC) is growing at
the expense of the OC, the ICB then being a phase boundary in the Fe-X; sys-
tem. From this perspective, if the OC mixture Fe-X is a eutectic system, and if
its composition lies on the Fe-rich side of the eutectic, pure Fe or Fe containing
“small” amounts of some or all of the of the X; may crystallize out at the ICB
to form the IC, leaving the coexisting liquid more highly concentrated in the X,.
In this case, the ICB will be a compositional and a phase boundary, and the
temperature of the ICB should then be bounded above by the melting tempera-

ture of pure Fe and below by the eutectic temperature of the system at the

ICB.

To explore possible high-pressure phase relations of Fe-X systems, we use
the recent experimental results on the solid-liquid phase boundaries of Fe
(Brown and McQueen, 1986; Williams et al., 1987), FeS (Fe,S: Brown et al,
1984; Williams and Jeanloz, 1986; Anderson et al., 1987a) and FeO (Fe,O:
Anderson et al., 1987a; Knittle and Jeanloz, 1987) to constrain models for Fe,
FeO and FeS solidi via a parameterization using Lindemann’s law and the
Hugoniot states of these materials. In addition, we use the Fe melting data of
Williams and Jeanloz (1986), as given in Williams et al. (1987), to constrain an
Fe liquidus and the equilibrium thermodynamic properties of liquid Fe in the

context of a liquid-state perturbation model (e.g., Stevenson, 1980) for Fe.
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With these models, we may rationally extrapolate the experimental results for
these materials to OC pressures, and use these extrapolations to explore possible
equilibrium phase relations of Fe-S and Fe-O systems, in a similar fashion to the

work of Stevenson (1981) and Anderson et al. (1987b) on Fe-S systems.

§2. High-Pressure Liquid-State Model for Fe

At high pressure and/or temperature, the influence of repulsive interatomic
or intermolecular forces on the structure and properties of most liquids suggests
a high-pressure, temperature model for these liquids in which the constituents
interact only repulsively. A logical extreme of this idea is represented by the
““hard-sphere”” model of a liquid (e.g., Hansen and MacDonald, 1975; Barker and
Henderson, 1976), which assumes the liquid is composed of perfectly spherical
“particles,” each having a diameter d, which interact in a pairwise fashion via a
potential, Y(r), of the form

oo r<d

Yhalr) = { 0 r>d [2.1],
where r is the (radial) distance from the center of either sphere involved in the
interaction. The collective interactions between the liquid constituents are, to
some degree, correlated (i.e., nonrandom) and give the liquid an effective (short
range) structure. For a liquid of N constituents, occupying a volume V, which
interact in a spherically symmetric fashion, this structure is described by the
radial pair-distribution function, g(r), defined such that 4mp,r2g(r) is the number
of spheres r to r+dr away from the center of a given sphere in the liquid, where
px = N/V is the number density of spheres. In particular, note that g(r), the
hard-sphere radial distribution function, is zero for r<d, since g(r) is propor-
tional to exp[-By(r)], where § = 1/k,T, T is the absolute temperature, and k; is

Boltzmann’s constant. X-ray diffraction and other techniques have found that
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the effective radial distribution function of many liquids, including liquid Fe at
standard pressure (e.g., Waseda and Ohtani, 1974; Gopal Rao and Sen, 1976;
Vorob’ev et al., 1977), is quite similar to g(r), suggesting that the constituents
of these liquids interact in a ‘‘hard-sphere-like,” radially symmetric fashion.
This observation, combined with the fact that, via statistical mechanics and
numerical simulations, the equilibrium thermodynamic properties of hard-sphere
liquids are well established (e.g., Barker and Henderson, 1976), suggests that the
corresponding properties of these liquids can be related, or referenced, to those
of a hard-sphere liquid (Zwanzig, 1954). Via the relation between the interac-
tion potential, canonical partition function, and Helmholtz free energy, this idea
leads to a relationship between the Helmholtz free energy of the liquid,
Fi(T,py), and that of the equivalent hard-sphere system, Fig(T,p,), of the form

Fiq <Fpoa =Fig + For [2.2]

(e.9., Mansoori and Canfield, 1969). In [2.2], F,,. is the total pair-interaction

contribution to F_,, t.e.,

Fpr = 27p, _[ °oxb(r)g,s(r)r"’dr [2.3],

where ¢(r) is the effective pair-interaction potential of the liquid constituents.
To use [2.2], we need expressions for g.(r), F,5, and 4(r). There exists no exact
solution for g(r), r>d; among the approximate solutions, that formulated by
Percus and Yevick (1959; PY), which assumes that any two liquid constituents
are essentially uncorrelated at distances greater than r=d, agrees best with
computer simulations (e.g., Alder and Wainwright, 1957). This agreement has
motivated a wealth of analytic results for the thermodynamic properties of a

PY hard-sphere fluid, including F,,, making it the logical choice as a reference

system.
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Because we cover a wide range of pressures and temperatures, including
low pressures, we choose a pair potential representing both repulsive (high P,T)
and attractive (low P,T) interactions. In particular, we assume the so-called
“Double-Yukawa'’ potential (e.g., Foiles and Asheroft, 1981)

Yr) = ﬂ{e‘)‘(r‘“) - e“"(r“’)} [2.4].

r

In [2.4], o represents the distance away from the center of each sphere where
the potential is equal to zero, i.e., ¥(o) = 0, while \"! is the characteristic
length scale of repulsive interaction, and w™! that for attraction interactions.
Also, € is related to the potential energy of interaction at equilibrium separa-
tion. Physically, we expect A>uw, since repulsion and attraction are dominantly
short and long-range interactions, respectively. In this case, note that Yr)>0
for r<o, and ¥(r)<0 for r>c. We use the Yukawa potential because 1) it is
fairly general, and 2) a number of analytic results exist for thermodynamic sys-

tems based on this potential via statistical mechanics, as we relate below and in

Appendix A.

For a liquid metal such as Fe, electronic processes may contribute to F;
consequently, we need to add a term F, to F_, such that
Frod = Fig + Foip + F. As discussed by Stevenson (1980), for example, elec-
tronic contributions to Fj, may significantly influence the cohesive energy,
incompressibility and heat capacity of the liquid. We represent Fq by its low
temperature (T much less than the Fermi temperature) Sommerfeld expansion

( g ’ ’ 2)

In [2.5], T is the density of electron states at zero temperature, related to the

electronic Gruneisen’s parameter, “Yes Via the relation (e.g., Wallace, 1972)
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dInl’ ]

2.6
dlnp,, [2-6]

|

Hence, I' is a function of density alone. Assuming ~, is constant, [2.6] implies

I(py) = I‘(pN,){ -%“L}% [2.7],

N

where p,, is some reference density at which I"' is known. The values of I" and ~,
of the ¢ and ~ phases of Fe have recently been calculated by Boness et al.
(1986). They argue that the values of I' and ~, so constrained should work for

liquid-Fe at high pressures as well. We adopt their assertion in the calculations

From these ingredients, we can develop relations for the equilibrium ther-
modynamic properties of a homogeneous liquid, which we do in Appendix A.
Here, we are particularly interested in relating pressure and temperature to
model parameters, since we want to constrain a liquid-state model for Fe from
the melting data of Williams and Jeanloz (1986; see also Williams et al., 1987),
which are in the form of temperatures in the solid and liquid approximately
adjacent to the phase boundary at a series of pressures. From Appendix A, we
have the following relations for temperature and pressure in the liquid as a
function of the mass density of the liquid, p, and model parameters, i.e. ([A.65]

and [A.66]),
= E T*(p,f); N*yw*s¢) [2.8]
and
P= —1131- E p'(py71; N*,w* s GE el 19Ye) [2.9]

respectively. In [2.8] and [2.9], we have \*=)\o, the nondimensional repulsive

length scale, w*=wo, the nondimensional attractive length scale, ﬁs%de3, the
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equilibrium packing fraction of liquid constituents,

=l = (3]
p M
where N, is Avogadro’s number, and E=¢/k,. Also, R is Ryberg’s constant, M
is the atomic weight, and p,, I'; and ~, are a reference mass density, density of
electronic states at zero temperature, and electronic Griineisen’s parameter,
respectively. These last 3 quantities are constrained independently, and so held
constant during the fit. In particular, for Fe, we use p, = 8352 kg/ m3,

I, = 5 mJ/mol‘K? and 4, = 1.34. These are, respectively, the measured STP

temperature and the temperature and electronic Gruneisen’s parameter (Boness
et al., 1986), of e-Fe. Since I' is a function of density only, we may recenter it
to the standard pressure, melting temperature density of liquid Fe, 7015 kg/m?
(Drotning, 1981). In this case, we have I'(7015) = 6.31 mJ/mol‘K2, which is
reasonably consistent with I'(7015) = 6.42 mJ/mol‘K? for liquid Fe from the
work of Yokoyama et al. (1983). With these 3 parameters fixed, [2.8] and [2.9]
relate 4 variables (T,P,p and #) and 4 constant unknowns, or parameters
(EX*w* and ¢). We may eliminate either p or # between [2.8] and [2.9] to

obtain
T = T(P,f); EX*w'¢) or T = T(P,p; E\*w*) [2.10],

respectively. Since we have no other relation(s) among the variables, [2.10)
implies that we must choose either p or # as a parameter of the fit. This choice
is not difficult, since p must change with pressure and temperature along the
liquidus. Assuming that # is constant along the liquidus is not unfounded; com-
puter simulations imply that #=20.45 along the liquidus (Alder and Wainwright,
1957), regardless of the density. Assuming this would tie the variation of the
hard-sphere diameter, d, directly to that of the density along the liquidus, since
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by definition of the packing fraction, d then varies inversely with the cube root

of the density. So, with #) as parameter of the fit, we have
T, = T(P; N\ w*,#,,E) [2.11]
giving us five parameters to constrain from the fit: E, ), \*, w* and ¢

We compare models and data in the context of the standard Poisson statis-
tic (e.g., Bevington, 1969; Press et al., 1986), x2. In our case, it is given by
N 1 2

x¥(a) = k§=31 m { Trax(Px) = Tharea(Pyia) } . [2.12]

In this relation, T,u,(P,), TyeuilP;a) and o(P,) are the experimental and model
melting temperatures, and the experimental uncertainties, respectively, all at a
particular pressure, P,. Also, N is the number of data points. T\area 1S given by

[2.11]. The “vector” a is the model parameter vector, with components ap, in

our case given by
a, = { \*, ', #), ¢, E} [2.13].

We minimize x?(a) using a combination of 1) multidimensional Golden Section
(GS) search to explore the x?(a) hypersurface for the distribution of local
minima, and 2) the Levenburg-Marquardt (LM) algorithm (e.g., Press et al.,
1986) to solve [2.12] locally and iteratively to find the “best fit” values of the

8ps 8p(min) defined by

xa) _ g,

Oa

This algorithm searches down successive independent (s.e., conjugate) gradients,
and terminates the iterative process when either a preset value of x2 (56, which
is twice the “best’ theoretically-expectable value; see below) and/or x2 does not
decrease by some chosen amount (1%) between successive iterations. We

present examples of “best fits” in Figure 2.1a, along with the Fe melting data of



- 317 -

Williams and Jeanloz (1986), as given in Williams et al. (1987), and compare
these fits with the Fe shock temperature results of Bass et al (1987). In their
diamond cell experiments, Williams and Jeanloz were able to directly observe Fe
melting; the ‘“Fe-solid’’ points correspond to the highest temperature at which
Fe was entirely solid, while those labeled ‘‘Fe-liquid”’ correspond to the lowest
temperatures at which Fe was entirely liquid. We use all these points (28) as
given, along with their associated uncertainties, in the fit. This allows the LM
algorithm to find the “best’”’ compromise among them, each datum influencing
the fit according to how “well” or “poorly’’ they are determined, as indicated
by their associated uncertainties and implemented in the x? statistic. The first
fit, shown by the dashed line, represents an entirely unconstrained fit, t.e., all
parameters are allowed to vary during the fit. This fit has a x2 of 150, with
parameter values \*=8.50, w'=0.361, /=0.451, ¢=0.0808 m/kg5, and
E=203 K. The value of x2 for a “good” fit is roughly given by the difference
between the number of data and fit parameters; in our case, then, we might
expect x2~23 at best. That our best fit is six times this value is not completely
unexpected, considering the amount of ‘“‘scatter” in the data. With this model
fit, we calculate a number of liquid-Fe properties using the relations detailed in
Appendix A and discussed below. Of particular importance is the density of Fe

along the liquidus, ph", given by, from [2.9]

P = Pas(P; N*w* 71,6,E ppen T 11Ve) [2.14],

which we plotted in Figure 2.1b versus pressure, along with perhaps the best
constraint we have on Fe at high-pressure, i.e., density along the Fe Hugoniot.
We have also plotted the density of solid Fe at the liquidus temperature, using
the Hugoniot density as reference via the method discussed below; these points
are labeled ‘‘Fe-solidus” in Figure 2.1b. With the expectations that the density
of liquid Fe should 1) be less than that of solid Fe at the same pressure and
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Figure 2.1. Liquid state model fits to the Fe melting data of Williams and
Jeanloz (1986). Part (a) depicts the temperature fits versus pres-
sure. The dashed curve represents the best unconstrained fit to
the data, while the continuous curve represents the best fit with
the liquidus density constrained to be less than or equal to that of
the solidus, as referenced to the Hugoniot, as shown in part (b).
Each solidus or hugoniot point (rectangle) represents +20 kg/m?
and +2 GPa. Vertical lines represent pressure at core-mantle
boundary (136 GPa) and outer-inner core boundary (330 GPa).
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temperature (for a positive Claperyon slope), and 2) approach the density of
solid-Fe along the phase boundary at high pressure, this fit that looks reason-
able in T-P space appears highly unlikely in P-p space. This fit is characteristic
of all local minima on the x? hypersurface investigated in a completely uncon-

strained fashion.

Given the unacceptable liquidus density prediction from the completely
unconstrained fits, we are compelled to constrain the density of liquid-Fe along
the liquidus to be less than or equal to that estimated for solid-Fe at (approxi-
mately) the same temperature during the fit. Among the model fits satisfying
this constraint, the one represented by the continuous curve in Figures 2.1a and
2.1b is “most” consistent with other information on liquid Fe, as we discuss
below. This fit has a x2 of 250 and fit parameters \*=8.02, w*=0.872, 7=0.49,
¢=0.0605 m/ kg;{3 and E=2190 K. Note that this is a significantly worse fit than
the first, on the basis of x2? alone. Note that this fit predicts significantly higher
temperatures along the Fe liquidus than the first, a reasonable result in order to
have a smaller liquidus density at the same pressure. This fit also predicts a
much higher (200-1000 K) melting temperature for Fe between 136 and 330
GPa than most previous predictions (e.g., Brown and McQueen, 1986; Ander-
son, 1982; but see Abelson, 1981; Bass et al., 1987; Williams et al., 1987). Both
of the fits imply that liquid Fe ‘‘jon-ion” interactions are strongly repulsive; this
is consistent with the observation that liquid-Fe is a “good” hard-sphere fluid.
These results imply that the variation of density along the phase boundary may

provide a more sensitive measure of model parameters than the coincident vari-

ation of temperature.

If we extrapolate the properties of liquid Fe predicted by this last model fit
to standard pressure (SP, 0.1 MPa), we may compare them with data constrain-
ing these properties or other calculations, as appropriate. The results of this are

presented in Table 2.1. Recall that we have used only the high-pressure data of
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Property Symbol Experimental Models SI Units
Melting temperature T, [1809° 1910t |K
Mass Density p |7015° 6857 |kg/m3
Molar Entropy S 99.7¢ 91.6 |J/mol-K
Packing Fractioni n 0.45% 0.49
Heat capacity, constant V.. C, 33.3° 37.14  39.0 |J /mol‘K
Isothermal Bulk Modulus K, g9? 87 |GPa
Gruneisen’s parameter ~ 2.44°¢ 1.677 1.62
Isentropic Bulk Modulus K, | 110¢ 1364 111 |GPa
Thermal expansion a 88d  122¢ 83¢ 89 |[uK!
Heat capacity, constant P C, 46.6' 49.8 |J/mol'K
Bulk Velocity vy |39307 4400* 4017 |m/s
Electrical Resistivity Pe 1.4} uflm
Shear Viscosity u 2.1° 4.8-7.0™ 2.5 |mPa-s
Thermal Conductivity k 32°¢ 34 |W/mK
Self-Diffusion D 4996 |nm?/s

tUnless otherwise indicated, all model values are from present work.

{Fit parameter.

¢ Robie et al. (1978).
} Drotning (1981).
€ Hultgren et al. (1973).

¢ Yokoyama et al. (1983).
¢ given in Stevenson (1981).

! calculated from v = aK./pc,.

f calculated from K = pv¢2 using v, from i
b calculated from K= pvf using v4 from

¥ Desai (1986).

i Kurz and Lux (1969).

E Filipov et al. (1966).

!Busch and Giintherodt (1974).
™ given in Gans (1972).

E
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Williams and Jeanloz (1986) to constrain the best fit, s.e., no other SP liquid Fe
properties besides ~, and I'(p,) constrain it. Notable discrepancies between
experimental and model fit values include the first five quantities listed in Table
2.1, t.e., the melting temperature, liquid density, the molar entropy, the equilib-
rium packing fraction, and the molar heat capacity at constant volume. The
fact that the molar entropy falls below the experimental value is partially due
to the relatively high value of # favored by the fit, since the entropy of the
hard-sphere reference system decreases with increasing # (via [A.43], Appendix
A). Attempted fits with # fixed at 0.45, the valued favored by liquid-state
numerical simulations (Alder and and Wainwright, 1957), predicted higher
liquidus temperatures (>8200 K at 330 GPa: see liquidus variation with 7 in
Figure 2.2a) at high pressure. Note that temperature along the liquidus is much
more sensitive to #) than density, as shown in Figures 2.2a and 2.2b. Since we
have held I'(p,) and ~, constant in the fits, it is possible to “improve” the
agreement between some of the fitted and experimental properties by adjusting
these parameters away from their independently established values. Another
reason we should have some discrepancies between the model fit and liquid Fe
properties is that we have not included an explicit contribution to the
Helmholtz free energy at zero temperature from the Fe valence electrons (D. J.
Stevenson, personal communication). This would introduce further parameters
for the fit to constrain, and given the data scatter and relative insensitivity of

the model parameters to the temperature along the phase boundary, we refrain

from doing this.

§3. Hugoniot and Solid-State Calculations

We estimate the high pressure and temperature states of solid Fe, FeS and
FeO from an equilibrium thermodynamic model referenced to the experimen-

tally constrained shock-compressed (Hugoniot) states of these materials. Since
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Figure 2.2. Temperature fits (part a) versus pressure for different values of the
equilibrium packing fraction, 7, around the best fit value. The
corresponding liquid density along these curves is shown in part

(b).
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we are interested in the high pressure, temperature states of initially semicon-
ducting or metallic solids that are all likely to be metallic at high pressure, we
construct a model Helmholtz free-energy (HFE), F(T,p), from contributions
reflecting the influence of both lattice and electronic processes. We assume the
Debye model to represent the harmonic lattice free energy, the low temperature

(T much less than the Fermi temperature) approximation to the electronic free

energy, —%I‘(,o)T2 (as above for liquid Fe), and the high-temperature (T greater

than the Debye temperature, ©,) approximation to the anharmonic free energy,

A,(p)T?, where A,(p) is related to the temperature dependence of the phonon-

frequency spectrum at constant pressure and hig

Neglecting potential lattice-electron and band-structure contributions to the

molar Helmholtz free energy, F(T,p), we have

F(T,p) = ®(p) + 31R { %xn + In[1 - &™) - %ED(XD)} T

+ Ag(p)T? - 2T (o)T? [3.1].

In [3.1], ®(p) is the zero-temperature lattice potential energy function, ©,(p) is
the Debye temperature, x, = x,(T,p) is the ratio of the Debye temperature to
the absolute temperature, v is the number of atoms in the chemical formula,

and E;(£) is the Debye internal-energy function (e.g., Gopal, 1966), given by

B =X 4 3.2]

0o [e*-1] *

O, is related to a lattice Gruneisen’s parameter, Y by (Wallace, 1972)

din®, } 3.3].

o= { dlnp

If we assume
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o) = o) 2] 34)
then we may write
8(r) = 6(p) exp{ 7”::') {1 - {%}%} } [3.5].

The high-temperature (T>©,) anharmonic contribution to the free energy,
A,(p)T? (Wallace, 1972), has the same temperature-dependence as the electronic
contribution to F, as given by [2.5] in the last section. In this sense, at least,
the high-temperature anharmonic and low-temperature electronic contributions
are indistinguishable. By analogy with [2.5], we assume, for simpiicity, that

w

(s) = T(p)- 2A400) = (o) 2 3.6].

In the calculations presented below, we constrain the values of Q(p) and w
empirically by requiring the high-pressure-phase (8) Hugoniot and melting curve
of Fe, FeS and FeO to intersect at an ‘‘appropriate’ pressure. As discussed in
the previous section, we have a further constraint on I'(p) for Fe from the work

of Boness et al. (1986).

Since we are working at high temperatures, i.e. T>6,, we may use the
high-temperature approximation (x;=6,(p,)/T—0) of the harmonic contribu-
tion to F(T,p). Detailing this approximation in Appendix B, we obtain from it

expressions for 1) the high-temperature molar entropy:
4 1
S = 3UR{-3— - Infx,] + TO-X%} + QT [3.7]
2) the high-temperature molar heat capacity at constant volume:

S 1
=T| <] = - 3.8
C, T[aT . 3uR [1 20xﬁ]+nT 3.8
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and 3), the high-temperature isothermal bulk modulus:

K, = K(0,0) + TRMD{ ()l + 53] + 1x3) T + Tpultw) T2 [5.9]

with

do d’®
K{0,0) = p{ 2p[ ] { } :
From these expressions, we have
oP Q0
= — — — .10 )

where ¢, = C,/M is the specific heat at constant volume. From [3.8] and [3.10],

we have the high-temperature equilibrium thermodynamic Gruneisen parameter

=y = L2
1= =t )T [3.11].

Note that ~, as given by [3.11], is very weakly temperature-dependent, since
w”2Y, (at least for Fe) in the range of pressures and temperatures of interest.
On this basis, we assume in what follows that ~ a function of density alone, and
equal to 4, in the solids of interest. From [3.9] and [3.10], we have the

coeflicient of thermal expansion

o= £0%) [3.12].

K.
Lastly, [3.8], [3.11], and [3.12], combined with
K, G,
— === (14 onT 3.13
= =+ e 313

provide the isentropic bulk modulus, K, and molar heat capacity at constant

pressure, C,. We use these expressions, particularly S, a and C,, in what fol-

lows.
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Assuming that Fe, FeS, and FeO shock compress as fluids, we calculate the
pressure, Py, and density, p, of a given Hugoniot state on the basis of the exper-
imentally constrained shock velocity, U, material velocity, v, relation, i.e.,

U=a+b,v, via the shock-wave ‘‘equation of state”

= -l - (2 - 1] 3.14]
(for byn,<1) with

p=pP)=1+ o
2b(P, - P))

(e.g., McQueen et al., 1967). In this relation, p{" is the uncompressed density of
the material occupying the low-pressure-phase, a, and n, = 1-p{'/p, is the rela-
tive compression, P, is the Hugoniot pressure, P, is the initial pressure, and the
subscripts “i”’ and ‘“H" stand for the initial (T,, P,) and Hugoniot states, respec-
tively. With the assumption that the Hugoniot state is one of thermodynamic
equilibrium, we construct an internal energy balance in the pressure-density
plane to calculate the temperature of the Hugoniot state, T, (e.g., McQueen et

al., 1967; Ahrens et al., 1969), of a high-pressure phase, 8, of the material. This

is represented by the relation

T,
[ e (T,p) dT = Ae, [3.15]
T(s. o)
where
fey= oo [Py + B - [ + A¢) 3.16]

is the difference in specific internal energy between the Hugoniot and principal
isentrope of # at constant volume (density, p,). Note that all quantities dis-
cussed in this section refer to the f-phase, unless otherwise designated. In [30],

Al = e( f) - e(s;,p’) is the difference in specific internal energy between o
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and # at T, and P, and Ae, = e(s,p,) — e(s;,p,) is the change in specific internal
energy along an isentrope of § with specific entropy s;, referenced to a density p,.
Also, T(s;,p,,) represents the temperature along this isentrope at a density p,, the
Hugoniot-state density of §, and x,, = 6,/ T,. Assuming T,>6,, we may sub-
stitute [3.9] into [3.15] to obtain a cubic equation for T, with solution

T, = 2vVp cos{—cos‘l{ p\(}- } } 2(1/;:) [3.17]

(Svendsen et al., 1987; Chapter I, §4), with

p= o 221 By
q=- Q'ZZ) {Q(I:IH) Alp,) + 3[ (H)]"’-!-S{ Q’ZRH)}Q}

and

Alod = Bedn) + FEELEIT, + 2o () + Lay.

We calculate Ae (;r)H)—Aeﬁl(p,,Ks‘Ks| »py) using third-order spatial finite-strain
theory. We estimate K, and K.sl , the STP isentropic bulk modulus and its first
pressure derivative, respectively, of the high-pressure phase, from the meta-
stable U-v relation of the high-pressure phase (McQueen et al., 1967; Svendsen

et al., 1987), which in turn is constrained from 4? a and b,. Also, we calculate

T(s;,py) from the relation

olnT
Olnp

= [3.18]

assuming v = ~(p). In this case, the relation for T(s;,p,) is of the same form as
that for 6(p) given by [3.10] above. With T,==298 K, P,=0.1 MPa (i.e., STP),

and p, 3, and b, constrained from pressure-density shock-experiments, we see
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from [3.17] that T, depends on Aef‘ “ and 6 STP properties of the high-pressure
phase, S, 1.e.

{7 A (0, @y O(a1), Q(p), w} [3.19]

Of these, T, is most sensitive to p;, Ae™ and 0(p,) (Svendsen et al, 1987). To
reduce the number of free parameters, we assume g=1 for Fe, FeS and FeO,
w=1 for FeS and FeO, and w=1.34 for Fe. The parameter w for Fe is chosen
in order to facilitate comparison of the Q(p,) values for Fe obtained below with
the values of I'(p;) and v, calculated by Boness et al. (1986) for e-Fe and ~-Fe.
Since p; for Fe, FeS and FeO FeS, FeO and Fe are constrained by previous

work, we fix it as well. We constrain Aef™ from the alance used to
obtain T, in the limit p,—p, assuming ~ is a function of volume only (Svendsen
et al., 1987). We have @, for ¢-Fe from Andrews (1973), and we estimate it for
the the high-pressure phases of FeS and FeO from the relation
St

by assuming the mean sound velocity of the high-pressure phase, v, is equal to
the bulk velocity of the high pressure phase, Vg Where vy, = \/Km This
estimate is an upper bound to the actual value of 6,, since it ignores the contri-
bution of transverse vibrations to V. All of these parameter values are given in
Table 3.1, leaving us with 2 ‘‘degrees of freedom”, i.e., %(#) and Q(p,), when

calculating T,

Solidus Calculations and Fits

Following many workers (e.g., Stacey, 1977), we use Lindemann’s law, i.e.,

dTM } T 1
—-_— =22 - =) [3.20]
{ dpM Lindemann Py ™ 3
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Table 3.1. High-Pressure Solid State STP Parameters for Fe, FeS and FeO.

Property

Symbol Fe FeS FeO SI Units

_——_——__—-—__'——'—___—————__

'Nolecula.r weight

ass density
ntercept, U-v relation
Slope, U-v relation

ass density p; 8352/ 56007 60504 kg/m?
PP-LPP SIE! difference Ae**  70* 800* 1454 kJ/kg
ntercept, U-v relation ai' 45174 53274 4823% m/s
lope, U-v relation b;* 157 1.32% 1.49*
sentropic Bulk Modulus K$ 170" 159° . 141° ] GPa
0K/dP) K, 5.287 4.287 4.957
ebye temperature e, 385t 674 670 K
§ exponent w 1.34™ 1.0" 1.0"
Hugoniot-Solidus
elting Temperature Ty, 1809 1468 1652 K
coefficient Q 3.35 11.43 7.54 mJ/mol-K?
hermal Expansion @ 45 155 100 pK!
ebye v o 1.93 1.50 1.90

M

a

pi
3
b;

0.055847°¢ 0.087907° 0.071846* kg/mol

Impedance match

7850° 4613° 55544 kg/m3
3955 3865° 4070° m/s
1.580% 1.351°¢ 1.503¢

High-Pressure solid phase

'Specific internal energy.
* Robie et al. (1978).

} Brown and McQueen (1986).

¢ Brown et al. (1984).

¢ Jeanloz and Ahrens (1980).

Fit to U-v data in ¢
I Jephcoat et al. (1986).
! Pichulo et al. (1976).

§Anharmon1c-electron1c
from Pi and U-v relation (see text).
assummg Ks—pa.,
7 from Ky =4b;"-1 (Ruoff, 1967).
 Andrews (1973)
from p; and a;°* (see text).
™~ of e-Fe (Boness et al., 1986) assumed.
" assumed.
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to parameterize the solid-two phase boundary (i.e., solidus). In [3.20], Tou IS
the lattice Gruneisen’s parameter at the melting point, given by w(p%) in the
context of the Debye approximation used in this work, py is the density of the
solid along the phase boundary, and T,, is the melting temperature. Since we
assume above that 4(p) is given by usual power-law relation ([3.5] above), [3.20]

may be integrated to give

Tuok) = Ta) {%"’5}% exp] 21 ;ﬁ;}%} b

where p¢ = p* (TMl,Pi) is the density of the solid at the melting temperature
Tu{/)=T,(P). Since the equilibrium thermodynamic properties as develo
from [3.1] and its high-temperature approximation (Appendix B) are functions
of temperature and density, we may calculate the variation of any of these pro-

perties, ¥(T,p), with temperature at constant pressure from the relation

WT,Pry) = YTytPrer) + .[:{g—?}?dT , 3.22),
where
(- (3)w2), e

and Py and T, are a pressure and temperature at which we know . In par-
ticular, with ¥=p®, the density of the solid along the solidus, p!, may be
estimated from the density determined experimentally along the Hugoniot, p,,

via a simultaneous solution of [3.21] and

Tm
#4(P) = p{P) exp} - fT a[T,p(T,P)|dT 3.24]

for T{p%) = T,(P) and p%(T,) = p%(P). We evaluate [3.24] numerically during
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the simultaneous solution, using [3.12] for o(T,p) and [3.17] for T,. This solu-

tion is subject to the initial conditions

pe = pi[l - (T - T5)] [3.25]

and
8 — . i ® — ’7D(pi) 3.96 ,
) = o) - | TR 3.26]

where T, = T,(P;) is the standard pressure melting temperature of the
material, and o; = a(T;,P;) the STP coefficient of thermal expansion. By com-
bining the solidus and Hugoniot temperatures and densities via [3.17], [3.21] and
[3.24]-[3.26], we have a simultaneous calculation for T,(P), 5 (P) and T, P)
dependent on 4 “free” parameters: v(p), Q(p,), o; and Ty, To fit the solidus
calculated in this fashion to the melting data, we again employ the x? statistic,
as given in [3.1], with T, =T,.(P;a) now given by [3.19], to fit a Lindemann
solidus to the Fe melting data of Williams and Jeanloz (1986), and compare this
fit to the Fe shock temperature results of Bass et al. (1987). For the FeS and
FeO solidi, however, we use [3.19] to calculate, rather than fit, these solidi
because there is only one high-pressure datum for each of these materials
currently available to the public. We display the results of the Fe fit, and the
FeS and FeO calculations in Figure 3.1. The FeS melting point at 50 GPa is
from the work of Williams and Jeanloz (1986; 3000 K), and this is consistent
‘with the results of Anderson et al. (1987a), while that for FeO is from the work
of Knittle and Jeanloz (1987), who state that “... at approximately 100 GPa the
melting temperature of FeO exceeds 5000 K..." On this “factual” basis, we
assume 5100 K. The best fit Fe-solidus shown in Figure 3.1 has a x2 of 70;
parameters for these curves are given in Table 3.1. This x? is substantially
lower than that of the best fit Fe-liquidus partly because the fit via [3.17], [3.19]
and [3.22] is numerically stable only above 20 GPa, and so we fit the 19 data
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Figure 3.1. Solidus fit to Fe melting data, and calculated FeO and FeS solidi
constrained by corresponding data. The FeO datum at 100 GPa
is from the work of Knittel and Jeanloz (1987), while that for FeS
at 50 GPa is from Williams and Jeanloz (1987). The FeS curve is
also consistent with the lower pressure constraints on FeS melting
from the shock-wave experiments of Anderson et al. (1987)
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above this pressure. In addition, the largest differences between the solidus and
Hugoniot densities (temperatures) occur at low pressure; consequently, the
corrections are largest at low pressure, and hence most suspect. Notice the the
solidi (Figure 3.1) curve down too much to asymptote out at the SP melting
temperature without a seemingly unphysical change in curvature and slope.
The use of a linear relation between density and temperature at SP, [3.20], also
contributes to this. A quadratic or other higher-order relation would give more
reasonable asymptotic behavior, but of course at the expense of yet more

parameters to constrain.

Comparing the density-constrained Fe liquidus in Figure 2.1 and the best-
fit solidus, we see that the best-fit liquidus lies at a higher temperature than the
corresponding solidus. If we fit the ‘‘best’” Fe-liquidus model with a Lindemann
solidus, we obtain w(p:)=1.90, Q(p;)=2.6 mJ/mol-K?,
o; = 58.4 uK™!,T,, = 1810 K and x2®=125. However, if we require
Q(p,)=5 mJ/mol'K?, the value of I'(p,) calculated theoretically by Boness et al.
(1986) for e-Fe (here adjusted to the density of e-Fe from Jephcoat et al, 1986),
in a fit to the data of Williams and Jeanloz (1986), we obtain ~(p)=1.79,
o = 54.5 pK™!, and T, =1809 K, with x2=75. These last two fits are
displayed in Figure 3.2, along with the associated Hugoniots. Since py and p,
are connected via a, which is initially small, and decreases with pressure (see
below), it turns out that the solidi are not very sensitive to Q(p). Experimental
constraints on the pressure at which liquid-solid phase boundary and high-
pressure phase Hugoniot of Fe (245 GPa: Brown and McQueen, 1982) and FeS
(125-150 GPa: Brown et al., 1984) intersect provide a stronger constraint on the
value of (p), which controls the slope of T,(P), as implied by [3.17]. This
intersection is shown for the two Fe-solidi displayed in Figure 3.2. We apply
this as an additional constraint in the Fe solidus fits, and the FeS solidus calcu-

lation. To our knowledge, there exists no experimentally motivated range of
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Figure 3.2. Intersection of two Fe Hugoniots and melting curve at 245 GPa.
“OM” represents value of {1 in units of J/mol-K2.
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pressures over which the FeO Hugoniot and melting curve are likely to inter-
sect, but it is almost certainly above 70 GPa (Jeanloz and Ahrens, 1980; Knittle
and Jeanloz, 1987), and probably above 245 GPa, where the Fe Hugoniot and
solidus apparently intersect, since the solidus extrapolated from the datum of
Knittle and Jeanloz (1987) is >1000 K above the solidus at a given pressure
above 100 GPa.

With parameters values established by the fit, the solid-state model pro-
vides us with specific values for the equilibrium thermodynamic properties as

functions of temperature and density. However, since we can calculate

p=p(T,P) via

o(T,P) = p(T,,P) exp - j; T o[T,o(T,P)dT| , 3.27]
H

at high pressure and temperature, referenced to the Hugoniot state {T,,P,.0,},
the model functions then depend on pressure and temperature. On this basis,
we use the Fe solidus fit (Figure 3.2, dash curve) to the constrained-density Fe
liquidus obtained in the last section to calculate the equilibrium thermodynamic
properties of solid Fe at the melting temperature as a function of pressure and
compare them to the corresponding liquid-Fe properties in Table 3.2. We note
that e-Fe is probably not the solid phase in equilibrium with liquid-Fe; above 5
GPa, +Fe is most likely the solid phase of Fe coexisting with liquid Fe (e.g.,
Anderson, 1982). We have tacitly assumed that this is of no consequence at
high pressure; even if it were, +-Fe is not sufficiently well characterized at high

pressure for us to distinguish it from e-Fe at high pressure.

For the phase relations discussed below, we are particularly interested in S,
the molar entropy, and C,, the molar heat capacity, of the liquid and solid.

From Table 3.2, we have AS}*=S/}-S:=83 J/mol'K (0.99'R) and
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Table 3.2. High-Pressure Solid & Liquid Fe Model Properties.

P=136 GPa P=330 GPa
(CMB) (ICB)

Hugoniot Solidus Liquidus | Hugoniott Solidus Liquidus | SI Units
T 3063 5007 4937 9275 7219 7296 K
P 11250 10880 10720 12900 13060 13220 kg/ m®
S 78.1 96.1 104.7 109.2 101.1 108.9 J/mol-K
Cy 30.2 34.8 413 38.2 36.8 421 J/mol-K
K. 677 584 630 1386 1495 1324 GPa
o] 1.40 1.43 2.41 1.27 1.26 2.54
K, 713 654 857 1518 1593 1792 GPa
a 12.6 16.8 30.3 8.1 7.2 19.1 | pK?
cp 31.8 39.1 56.2 41.9 39.2 56.9 | J/molK
\P 7958 7702 8943 10850 11040 11640 m/s
I 9 14 mPa-s
k 89 133 W/mK
D 6645 8488 nm?/s

t - Metastable ¢ Hugoniot.
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ACHR’=Cn~C=17.1 J/mol'K (2.06'R) at 136 GPa, while
AS~*=7.8 J/mol’K (0.94R) and ACHx’=17.7 J/mol'K (2.13R) at 330 GPa.
These compare with ASA™ = 7.7 J/mol'K (0.93-R) (Desai, 1986) and
AC* =421 /mol’K (0.51'R: Hultgren et al, 1973) at SP. A number of
theoretical and experimental studies (see, for example, Stishov, 1975) on elemen-
tal compounds suggest that 1) the value of the entropy of melting, AS‘~*,
varies little among these substances, and approaches R at high temperature, 2)
AS'~* varies with the volume change upon melting, Av'~*, such that AS/~* —
0.693 (i.e., In2) R as Av'~* —0. In the context of a simple cell order-disorder
model (Stishov, 1975), we note that AS'~* ~R for complete disorder (.e., one
“atom” per cell, no short-range order) among the liquid constituents, while
AS' % ~0.693R for pair ordering (i.e., up to two atoms per cell, randomly occu-
pied cells, short-range order). In addition, Gschneider (1964) has found, for a
number of close-packed monatomic solids, that AS'~® ~1.1523'R. Our results
are somewhat contrary to this, since we calculate high-pressure values for AS)-s
of the same magnitude as the SP value. As for the large increase in AC/5¢ with
pressure calculated here, we have no theoretical explanation at this point, but it
is at least partly because v increases with pressure in the liquid (Tables 2.1 and
3.2) but decreases with pressure in the solid. This behavior for ~ is not unex-
pected (Knopoff and Shapiro, 1970). Also, the thermal expansion of the liquid is
about twice that of the solid along the phase boundary. With these results, we

may now address phase relations in Fe-S and Fe-O systems.

§4. Fe-FeX Phase Diagrams and Implications for the Core

The results of the solidus and liquidus models given in the previous section
for Fe, FeS and FeO may be used to calculate ideal phase relations between
liquid and solid Fe-X mixtures, in the context of the following model. We

assume that these mixtures coexist in thermodynamic equilibrium, 1e.,
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Pl =P = P* [4.1],

where the superscript ! denotes a property of the liquid, and superscript s a
property of the solid. The equilibrium chemical potential for component ¢ in

phase o (i.e., solid or liquid) is defined by
p(T,Pxf) = uf(TP,1) + RTlna*T,P,x?) [4.2]

(e.g., Prigogine and Defay, 1954). In this relation, u&(T,P,1) is the chemical
potential of pure ¢ in phase a, a®(T,P,x) is the activity of ¢ in the phase-a

mixture, defined by
a,-a(T,P,x,-“) = )\ia(T,P,X,'a) X,'a, [4.3]

where \* is the activity coefficient, and x* the mole fraction, of component ¢ in

phase a.

Following Stevenson (1981), we assume that both the liquid and solid Fe-X
mixtures are fully associated, .., FeX < Fe + X in both phases. This implies
that FeX is a distinct, energetically favored species, along with Fe and X, in
both phases. In this context, Prigogine and Defay (1954) have shown that the
chemical potentials of the species Fe and X are equal to those of components Fe

and X, implying that,
bex (T,P,x*) = (TP x%) + pd(T,P,x) [4.4]
= 2 (T,P,-;—) + RT Ina % (T,P,x%) [4.5],

where p,5 is the chemical potential of FeX in phase a, and we have defined x®
as the mole fraction of X in phase a; then 1-x“ is the mole fraction of Fe in a.

Substituting [4.2] into [4.4] for Fe and X, we obtain, from [4.4] and [4.5]

B = a7 af e DA = \a\E x%(1-x?) e Bl [4.6]
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where B=1/RT, and we have defined
Ay (TP) = u;&(iﬂx“s%) ~ (TP x*=0) -~ (TP x*=1) [4.7].

Now, by definition, 2,3 must be unity when x°=%. Putting this “boundary

condition” into [4.6], we have

a arly
M(3) M(F) = 4eBann’s [4.8].
With this, a,2 becomes
M M
al = 4{ﬁ—} x*(1-x%) 4.9],
Ml(z) M(3)

and this is the expression we require to use [4.5] for 2. Now we turn to phase

equilibria in the Fe-FeX subsystem.

The equilibrium liquid-solid phase boundaries in the Fe-FeX subsystem are

defined by (from [4.1]3)
sl (T,Px!) = u! (T,Px*) [4.10]

and

bt (TP X' ) = pd (TPx*) [4.11].

Substituting [4.2], with s =Fe, and [4.5] into these, we obtain

M(1-x ) = 22 (1-x* )eBom™ [4.12]
and
M(2) M (L
Maixf(1x!) = A Aex? (1-x?) e (é)) X)::( (2%)) e BOurS" [4.13],
where

At (TP) = p(T,P,0) - s (T,P,0) [4.14]

and
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Bpels? (TP) = ke (TP, 1) - s (TP, 1) [4.15).

Note that Apl* (TypP)=Atnx’ (TyreoP)=0 by [4.1]3. Following Stevenson
(1981), we expand Apus* (T,P) and Ap,l:* (T,P) at constant pressure about the
states {T=T, p P, x =x* =0} and {T=Tyre0 P, ¥ —% , respectively, to

second order in (T-T,), t.e.,
Aplt? (T,P) ~ T(6am 1){AS"' (TunP.0) = TACK! (TynP0) (6 )} 14.16]

and

Auglst (T,P) ~ T(£,,-1)

{855 (TucP ) - 2ACK: (TuroPrd) (6uet))  1a17)

where AS/*=AS/™P,T,;x'=x’) and AC/* =AC, I~ (P,T,; x'=x°) are
the contrasts in entropy and specific heat at constant pressure of component &

between liquid and solid phases at the indicated reference conditions. Also, we

have defined &, = T, /T and & = Ty e/ T-

Following Stevenson (1981), we now apply [4.14] and [4.15] to the case
where Fe and FeX mix ideally in the liquid state. In this case, we have

M, =Xy =1 for all x'. Putting these into [4.12] and [4.13], we have
(1—x') = 22 (1-x* )e-Bawn™ [4.18]

and

x(1x!) = dn N x? (1-x* )e'BA“Fé(—' [4.19].

M (3 (3)

Further, we assume that Fe and FeX are completely immiscible in the solid

state. In this case, x* = O on the Fe-rich side of the phase diagram, as given

by [4.18], while x* = = on the FeX-rich side, as given by [4.19); consequently,

'2'
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[4.18] and [4.19] reduce to

x} =1 - e Bout~ [4.20]

for the Fe-rich side of the phase diagram (A2 (x* =0) = 1), and
xt = %{1— (1-eBom ) } [4.21]

for the FeX-rich side, respectively. Elimination of either x' or T from [4.20]
and [4.21] provides us with implicit expressions for the eutectic temperature,

Ty, or composition, x,,, respectively, of the system, t.e.,

Xeu = Xeu(&pAS, -2 ,ACPfF;‘,ASm"‘ ’ACP[-F-&)

and
Tew = Teu( Trr B8, ACR", Tyipoo ASped ¢ ,A )

where §, = Tyre/ Tuze is the ratio of end-member melting temperatures. In
Figure 4.1, we display x,, as a function of & for different values of AS!-?,
assuming AS!'~* =AS_ !-# =AS, /- and ACK =0=AC/=:. As evident, the
eutectic composition will be more X-rich as the melting temperature of FeX
decreases below that of Fe, the more drastically as AS/~* increases. Assuming
Tys=7250 K from above, the variation of Tey with &, displayed in Figure 4.2
shows that the eutectic temperature increases with & for a given value of
AS'~* and decreases with AS'~* at a given value of §, Consequently, T,, will

take on a minimum value for minimum values &, and AS'~* and ACY =0,

Having established values for T, Typo ASp/~* and ACH:? above, we
now assume that AS,/-¢ for X=O,S are given by their SP values, i.e.,
ASp!-¢ = 22.0J/mol'’K (Robie et al., 1978) and AS./-* = 13.4J/mol'K
(Robie et al, 1978), respectively, and that either ACP{,;,‘FAC,J_F;" or
ACJ,;’FO=ACP{,;’, in order to calculate ideal-mixing liquidi for Fe-FeX via

[4.20] and [4.21). We display the results of this in Figures 4.3a-b for P=136
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Figure 4.1. Eutectic composition versus the ratio of end member melting tem-
peratures, showing the dominant influence of this property on the
eutectic composition. “Ds” represents AS'~* in units of R, and
AC{ =0 for this calculation.
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Figure 4.2. Eutectic temperature versus ratio of end member melting tempera-

tures referenced to Tum=7250 at P=330 GPa. ‘Ds’” has same
meaning as in Figure 5.
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GPa, the pressure at the core-mantle boundary (CMB), and in Figures 4.4a-b
for P=330 GPa, the pressure of the outer-inner core boundary (ICB). As evi-
dent, the value of AC{~* affects mainly the curvature of the liquidus, while
AS!-¢ affects its slope. As implied from Figure 4.2, we obtain the minimum
value of T,, for the minimum value of AS'~* and AC{*=0 in Figures 4.3a-b
and 4.4a-b. Via the results of Figure 4.1, we also see that, because
Type/ Tawe <1 While T, oo/ Tye>1, the Fe-FeS eutectic composition shifts
toward the FeS rich side of the system, whereas the Fe-FeO eutectic composi-
tion falls toward the Fe-rich side, both at 136 GPa and 330 GPa. The
significantly higher melting temperature of FeO as compared to Fe or FeS (Fig-
ure 3.1) at a given pressure suggests that this compound is relatively stable at
high pressures and temperatures, and probably remains largely associated dur-
ing melting. In this case, it is reasonable to assume that the liquidus and
solidus coincide in the Fe-O system at the composition FeO, as done above.
For these very same reasons, of course, this assumption is suspect for the Fe-S
system, t.e., FeS is less stable as a solid than either Fe or FeO, hence more
likely to melt incongruently that FeO; further, since the effective radii of Fe and
(metallized) S atoms at high pressure are apparently almost identical (Boness et

al., 1986).

As pointed out by numerous workers (e.g., Stevenson, 1981), the OC is
most likely a mixture of Fe, Ni and a number of other elements X; whose pres-
ence is required to lower the melting point of the OC below its temperature.
Besides the usual cosmochemical considerations, the idea that these elements
must have a mean atomic weight significantly less than Fe or Ni rests princi-
pally on the observation that the seismically constrained density profile of the
OC is ~10% lower than that of shock-compressed Fe at the same pressure.
More recently, Brown and McQueen (1982) compared their experimental results

for elastic-wave velocities in shock-compressed Fe with the outer core seismic
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Figure 4.3. Model temperature versus mole %X in the Fe-FeO (part a) and
Fe-FeS (part b) systems at the pressure of the core-mantle boun-
dary (CMB), 135 GPa. “Ds” and “Dcp” stand for AS'~® and
AC{ ™ for the indicated end-member
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velocity profiles. The value of either of of these comparisons (again, at the
same pressure) rests strongly on a knowledge of 1) the temperature difference
between shock-compressed Fe and the OC and 2) the effect of mixing other ele-
ments with Fe under core conditions (e.g., Birch, 1952; Jeanloz, 1979). Consid-
ering that seismic density profiles depend on velocity profiles and models, the
velocity comparison should be more decisive than that for density, at least from
the seismic viewpoint. As noted by Stacey et al. (1981), uncertainties in the
temperature profile of the OC, combined with uncertainties in the seismically
constrained demnsity profile, may admit, from the density viewpoint alone, the
possibility of no light component. Since the OC density profile is inherently less
well constrained than the velocity profile, the observation that the OC does not
support shear in the seismic frequency band in concert with the idea that
Ty\me>Toc together constitute perhaps the the most compelling evidence for the
OC to be a liquid Fe,Ni-X; mixture. With this in mind, we note that, as calcu-
lated above, the melting temperature of FeO is about 1500 K greater than that
of Fe at 330 GPa, which is in turn about 1000 K greater than that of FeS at
this pressure, we note that calculated Fe-FeO eutectic compositions at 330 GPa
(15-20 mole % O) are less than 25 mole % O, while calculated Fe-FeS eutectic
compositions at 330 GPa (23-30 mole % S) are generally greater than 25 mole
% S. The mass density of the Earth’s outer core just above the inner core
boundary is approximately 12160 kg/m3, and we note that this is also the den-
sity of an ideal mixture of 93 mole % Fe and 7 mole % S (i.e., 14 mole % FeS),
and a similar mixture of approximately 72 mole % Fe and 28 mole % O (56
mole % FeO). Consequently, these calculations and considerations imply that
an O-rich outer core is more likely to lie on the FeO-rich side of the Fe-FeX

eutectic, while an S-rich outer core is more likely to lie on the Fe-rich side of

the Fe-FeX eutectic.



- 357 -

Figure 4.4. Model temperature versus mole %X in the Fe-FeO (part a) and

Fe-FeS (part b) systems at the pressure of the outer-inner core
boundary (ICB), 330 GPa.
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Comparing the Fe-FeO eutectic compositions in Figure 4.3a and 4.4a, and
the Fe-FeS eutectic compositions in Figures 4.3b and 4.4b, we see that the
eutecticrcompositions in both of these systems are relatively insensitive to pres-
sure. This is largely due to the fact that &, which controls x,, as shown in Fig-
ure 4.1, is insensitive to pressure for both Fe-FeS and Fe-FeO. The eutectic
temperatures, however, vary between about 4000 and 6000 K between 136 and
330 GPa. Assuming AS‘~* ~In2R is a reasonable lower-bound to AS'-* , then,
the temperature of the outer core must be above this value to remain a liquid
Fe-X mixture. As can be seen in Figure 4.5, this idea implies that current esti-
mates of the temperature profile of the outer core, bounded below by that of
Brown and Shankland (1980), and above by that of Stacey (1977), are 1000-1500
K too low, and should be above approximately 4000 K at 136 GPa and 5000 K
at 330 GPa. Also, with a temperature of {3000K at the top of the D” region,
for example, this implies a thermal boundary layer >1000-1500 K somewhere in
the mantle, possibly also supporting the need of multiple boundary layers in the
mantle (e.g, Jeanloz and Richter, 1979; Spiliopoulos and Stacey, 1984), a larger
contribution from primordial heat to the current heat flux out of the Earth, and

a larger initial energy bugdet for the Earth.

§56. Summary

Liquid-state and solid-state model fits to melting data for Fe, FeS and FeO
provide constraints for calculating ideal phase relations in Fe-FeS and Fe-FeO
systems in the pressure range corresponding to the earth’s outer core. The
liquid-state model fit to the Fe melting data of Williams and Jeanloz (1986)
places constraints on the temperature and other properties along the liquidus
above the range of their data. The temperature along the best-fit Fe liquidus is
5000 K at 136 GPa and 7250 K at 330 GPa, which is somewhat lower than that
implied by the Hugoniot results (~ 7800 K). This discrepancy may be due to
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Figure 4.5. Temperature versus pressure along the model Fe, FeS and FeO
melting curves, as well as those along the minimum temperature
(AS!-* =Rlog2, AC{*=0) Fe-FeS and Fe-FeO eutectics com-
pared to outer-core temperature profiles of Stacey (1977; triangles)
and Brown and Shankland (1980; diamonds). Along the Fe-FeS
eutectic, the mole % X ranges from 25% at the CMB to 27% at
the ICB, while along the Fe-FeO eutectic it ranges from 13% at
the CMB to 12% at the ICB.
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the reshock effect discussed above, or some inaccuracy in the extrapolation,
presuming the Hugoniot results represent the equilibrium melting behavior of
Fe. Constraints on the solidi of FeS and FeO from the comparison of data and
solid-state model calculations imply that FeS and FeO melt at 4610 K and 5100
K, respectively, at 136 GPa, and 6150 K and 8950 K, respectively, at 330 GPa.
Calculations for the equilibrium thermodynamic properties of solid and liquid Fe
along the coincident solidus and liquidus imply that the entropy of melting for
Fe is approximately independent of pressure at a value of approximately R
(where R is Ryberg’s constant), while the change in the molar heat capacity
across the transition increases with pressure from approximately 0.5 R to 4R
between standard pressure and 330 GPa. We use these constraints to construct
ideal-mixing phase diagrams for Fe-FeS and Fe-FeO systems at outer core pres-
sures, assuming that Fe and FeS, or Fe and FeO, respectively, are the solid
phases in equilibrium with the liquid Fe-FeS or Fe-FeO mixtures, respectively.
The composition of the Fe-X (X=0 or S) liquid mixture relative to the eutectic
composition of the Fe-FeX system determines whether Fe or FeX will solidfy at
the liquidus. For these ideal mixing calculations, the eutectic composition is
controlled by the ratio of the end-member (i.e., Fe and FeX) melting tempera-
tures at a given pressure. If Fe and FeX have the same melting temperature,
for example, the eutectic composition is 25 mole % X; if the melting tempera-
ture of FeX is greater or less than Fe, the eutectic composition will be displaced
to more Fe or FeX rich compositions, respectively. Since, as quoted above, the
melting temperature of FeO is about 1500 K greater than that of Fe at 330
GPa, which is in turn about 1000 K greater than that of FeS at this pressure,
we note that calculated Fe-FeO eutectic compositions at 330 GPa (15-20 mole |
% O) are less than 25 mole % O, while calculated Fe-FeS eutectic compositions
at 330 GPa (23-30 mole %. S) are generally greater than 25 mole % S. The

mass density of the Earth’s outer core just above the inner core boundary is
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approximately 12160 kg/m3, and we note that this is also the density of an ideal
mixture of 93 mole % Fe and 7 mole % S (i.e., 14 mole % FeS), and a similar
mixture of approximately 72 mole % Fe and 28 mole % O (56 mole % FeO).
Consequently, these calculations and considerations imply that an O-rich outer
core is more likely to lie on the FeO-rich side of the Fe-FeX eutectic, while an

S-rich outer core is more likely to lie on the Fe-rich side of the Fe-FeX eutectic.

The temperature of the Fe-FeS eutectic are lower than the Fe-FeO eutec-
tic, being approximately 5000 K at 330 GPa. Note that the eutectic tempera-
ture represents a lower bound to temperatures at the outer-inner core boundary
under the hypothesis that this boundary represents the liquidus in an Fe-X mix-
ture. Eutectic and end-member melting temperatures in both the Fe-FeS and
Fe-FeO systems imply, in the context of the outer-inner core boundary-phase
boundary hypothesis, that previous widely-accepted temperature profiles for the
outer core, ranging from 3000 K at the 136 GPa, the core-mantle boundary,
to <4200 K at 330 GPa, the outer-inner core boundary, are about 1000-1500 K
too low. This possibility implies that at least one boundary layer of 1000-1500

K exists in the mantle, possibly at its base in the D' region.
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§6. Appendix A: Equilibriumn Thermodynamic Model for a Liquid

The equilibrium thermodynamic properties of liquid-Fe discussed in the
text are referenced to those of a hard-sphere liquid via the Gibbs-Bogolyubov
(GB) inequality (e.g., Isihara, 1968; Hansen and McDonald, 1975). This
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inequality states that the equilibrium thermodynamic Helmholtz free energy
(HFE) of the liquid, F;;4(T,p), is bounded above by the HFE of an “equivalent”
system of hard spheres which interact with each other (to first order) as do the
actual “ions” or “particles” of the liquid. For a liquid metal, the GB inequality

takes the form
Fiq £ Fpoa = Fis + Fin + F [A.1]

Note that this HFE has units of Joules. In this expression, F, is the HFE of
the hard-sphere reference system, F. is the “ion-ion” interaction contribution
to F, and F,, is the electronic contribution to F. F,. may be obtained from the

ressibility equation-of-sta

Q
quation 2]

'
@)
-4
o+
er
@
<

expansion (e.g., Hansen and McDonald, 1975). As discussed by Foiles and Ash-
croft (1981), the virial form of F,; may provide a better approximation to F.s
and the liquid pressure than the compressibility form, since the virial form
directly represents the pressure, and is one derivative less removed from Fis
than the compressibility form. Since we are interested in the pressure and tem-
perature, as discussed below, we use the virial form of F,.. For a single-

component liquid of N particles, occupying a volume V, this is

Fir =F, + Nk,;r{ '(1%) + 2111(1—17)} [A.2],

respectively, where # = mpd3/6 is the hard-sphere packing fraction, equal to
the product of the volume of a single sphere 1rd3/ 6, and the number density of
spheres, py = N/V. Note that d is the diameter of a given sphere. In [A.2), F,,

is the HFE of a single-component ideal gas, ¢.e.,

F,, = Nk T[In(pA3) - 1] [A.3].

In [A.3], A = h/[2mmk,T}%, h is Planck’s constant, m is the mass of a single

particle (sphere), and k, is Boltzmann’s constant.
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The total pair-interaction contribution to F, Fop is given to first order by

the relation

Fan = 21(N-1)5, [ TAr) - a0l (A4]

(e.9., Mansoori and Canfield, 1969). In [A.4], ¥(r) describes the interaction of
two liquid particles at a distance r away from the center of a given particle,
gs(r) is the hard-sphere radial distribution function, defined such that
4mprgs(r)dr represents the average number of hard-sphere at a distance r to

r+dr away from a given sphere. Also, ¥(r) describes the interaction of two

hard-spheres, i.e.,

oo r<d
Us(r) = 0 r>d [A.5].
Since g(r) is proportional to exp[-By44(r)], with # = 1/k,T, we see that, from
[A.5], g(r) = O for r<d. In this case, the product (r)g,(r) is always zero.
Consequently, [A.4] may be written

Fpr = 2m(N-1)p, j; oow(x')gﬂs(r)rzdr [A.6],

since the integral from O to d is zero via the definition of v(r) in [A.5]. This
expresses the physical idea that ions are unlikely to interact at distances closer
than their ‘‘hard-sphere” diameters. As such, interaction closer than r=d con-
tribute little to F, and this is idealized to nothing in the model. To evaluate

[A.6] further, we must assume forms for 9(r) and g.(r). We assume ¥(r) has the

Yukawa form

Yr) = %e‘“ A7),

Then we may put [A.6] into the form
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For = 2m(N-1)p,€ f ooe‘>‘r [rg.(r)]dr
0

= 27(N-1)p,¢ L{rga(r)}(\) A8].

In [A.8], L is the Laplace transform operator. This form is advantageous
because I, [rg,s(r)] is known analytically for the Percus-Yevick approximation to
gs(r) (Wertheim, 1963). Note that [A.7] represents only repulsive pair interac-
tions. To assess the possibility of attractive interactions in liquid-Fe, which
may be important at lower pressures, we add an attractive term to [A.5] and

obtain the so-called ‘‘double Yukawa” potential, i.e.,

Yr) = frz { eNro) _ e“"("")} [A.9].

In [A.9], o represents the distance away from the center of each sphere where
attractive and repulsive interactions balance, i.e. ¥{o) = 0 (equilibrium), while
A7! is the characteristic length scale of repulsive interaction, and w™! that for
attraction interactions. Physically, we expect A\ >w, since repulsion and attrac-
tion are dominantly short- and long-range interactions, respectively. In this

case, note that 4(r)>0 for r<o, and 9(r)<0 for r>o.

If we substitute [A.9] into [A.6], we obtain

Fa = 2aN-1e{ 7 L{raut}0) - ¢ Lirgu})]  [A10]
Nondimensionalizing r by d, the hard sphere diameter, in [A.10], we have
Faw = 120N-1)£1] & L{taa©}00) - o Litau(@}w'e)] (A1

with £ =r/d, \* = Mo, w* = wo and ¢ = d/o. From Wertheim (1963), we

have
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L {xg.o(x)}(x) = lzn[L(;)L:fOS(X)eX] (A.12]
with
L{x) = 12n[(1+27) + (1+3m)x]
and [A.13)

S(x) = (1-n)°x® + 6n(1-n)x? + 18n%x - 12n(1+21)

when g.(r) is approximated by the Percus-Yevick relation (Percus and Yevick,

1959). Putting [A.12] into [A.11], we obtain

For = (N-1)¢[H(e

INT =7

where

L(uc,n)
[L(pc,n) + S(pc,n)erc]

H(e,mu) = pe# [A.15].

In the text, we represent F,; by its low temperature (T much less than the

Fermi temperature) Sommerfeld expansion
1 2
F,=- 3 I'(p)T [A.16].

In [A.186], T'(p) is the density of electron energy states at the Fermi energy (sur-

face); it is commonly given the form (e.g., Wallace, 1972)

T'(p) =T(o;)(pi/ )™,

where 7, is the electronic thermostatic Gruneisen’s parameter of the liquid in

this case.

We now nondimensionalize F by the product of the number of particles in
the system, N, and k,T, such that f= F/N = F/Nk,T. Also, we define a non-
dimensional temperature, T* = k,T/¢, and a nondimensional number density,

pr = po°. With these, we rewrite [A.1] as
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ol T* 08 ot = BT 80) + Lo T mon' ") + £(T"00) (A7)

with
LIN(T* plm) = £(T*0%) + —— ( — ) + 2In(1-n) [A.18],
(T*) = 1n(5) - S1n(T*) + 3In(A) - 1 A19],
for = %[H(c,n;)\') - H(e,mw*)] = —'I%AH(c,n;X',w‘) [A.20],

and
= ——r‘( ST = i - T(oT" A.21],

where A* = h/ov2mme, and (N-1)=N for a “macroscopic” liquid. In [A.17] and
[A.18]-[A.21], \* and w* are constants, as is o from the Yukawa potential. So

now we have f ; = f_4(T*p%n,c) explicitly. In this case, the total differential
mod mod N

of f 4 is

df, g = {ﬁmt} aT* + {ifm.} dg?,
T*n.c

BT‘ Pﬁ,”l,c p;
+ {ifm} dn + {Q’m} de [A.22].
317 T',p;,,c Bc T‘.Pr;.'l

Since n = %p;ca, however, [A.22] may be written

dfmod_{ﬂmgd-} dT*+{ifmg¢} dp;+{ifm¢} de  [A.23]
aT* | . 3% J o, -

with

Ology 0 } + {—mﬂaf } { 6"‘ } [A.24],
Oy T cn on T ¢c,on Oy ) .

S R R - - S|
ac T ot ac T.,P;z,ﬂ a’n T',pﬁ,c ac ﬂ;
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and
on } M1 {Bn} 37
e ] o0 TR i G} [A.26].
{ s ). o a gc f . ¢

Now, in equilibrium, f;, = f;;(T*p}) for the single-component system we have

here. Consequently,

af' * af' *
dfy, = {—hn-} dT* + {—m} dgt [A.27].
oT P 3pN T

From [A.27], at constant T* and py, we have dfy, = 0, while from [A.23],

we have, at constant T* and p},
ped) 1oy = | Zt ) g
’ dc ). o
therefore, to have df,,) 103 = O for arbitrary dc, we require

{ o d

= }T.’p& =0 [A.28]

for f .4 to be an equilibrium thermodynamic state function. More explicitly,

[A.28] states, using [A.18]-[A.21], that

e ML b BN G 7l N £ -
ac T‘, . ac T',pﬁ,f) 31] T‘,ﬂ&,c ac T.,P];
_____1__{3AH} {1{6AH} +f(1)}3—"so
T* dc T".o8n T* an T ptc c
where [A.29]
£(0) = ﬂm]
HS d17(n)

We may rewrite [A.29] as an implicit function for the equilibrium value of ¢, i.e.

L(T*e¢,n) = 37”1‘},(;) + %{{ ach { —BQ;H } %} =0 [A.30]
T*.;1n T*,pnc
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and we may solve this simultaneously with

L{pywe,m) = n—m/6p%c® =0 [A.31].

for ¢ or n as a function of T* and p}. Relation [A.31] comes from the definition
of the packing fraction; together with [A.30], it gives us two equations among 4
unknowns (¢,7,T* and p}). Mathematically, any two of these may be con-
sidered, via [A.30] and [A.31], as independent; T* and p}, are the logical choice
from the equilibrium thermodynamic perspective. On this basis, we designate
the values of ¢ and 7 given implicitly by [A.30}-[A.31] as & = &(T*}) and

i = #(T"py), the equilibrium values of ¢ and 7, respectively, for a given equilib-

o]

ium state (T*20). I ice, any two of the 4 variables may be considered

prac

]

independent. For [A.28] to constrain a minimum value of f_,, and so a least-

upper-bound to f;,(T*,py) via the GB inequality, we also require

{ O og

>0 A.32].
302 }T',p;; [ ]

Consequently, with f,,.4(T*,p%c,n) satisfying [A.28] and [A.32], and & and # con-
strained from [A.30]-[A.31], we may write
fliq(T"" ;:) ~ fmod(T"p;)

* * A * * 1 A * ) A * * * *
= ig(T ox) + f}s[n(T ’pu)] + FAH[C(T 00),7( T, N)] + fu(T*,0x

[A.33]

as the basic model relation for the equilibrium HFE of the liquid. In this case,
we may derive all equilibrium thermodynamic properties from [A.33]. For

example, the pressure is then

PE—{%}T,N=—{%(€-%)1}T,N=WM;{%‘??}T' [A.34]

Defining a nondimensional pressure, p = #P/p,, and substituting [A.18]-[A.21]
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into [A.33], we have

of ]
p=pN[—‘m] =1+ o} "]
T apN

= %) Alag ) 15 ) A3t .

+ %%I“T‘ [A.35].

Now, from the definition of the packing fraction, we may write

re

(88
P

=i+ p ] [A.36].
apN IT‘ opy

Substituting this into [A.35], we obtain

i)

+{L[3AH { [aAH +f(1)}_jl}p 0¢ ]
T‘ ¢ a ¢ apN T

] ¢

=1+n{

+ =~ *T* [A.37].

By [A.29] the third term on the right-hand side of [A.37] is zero. Therefore,

p=1+ ﬁ{r,gl) + — [ aAH } + %q,l“T‘ [A.38].
¢
Now, the entropy is defined by
oF of,
= _[_ - -Nk,,{f,,,od + T[—-mi] } (A.39]
oT VN oT* ) pe

and S has units of J/K. A natural nondimensional entropy is then
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ot
= =-fm°+T*l—mL]
5= N = Hmos ot ) )
=3 ¢ ¢ -l _[BAH }_3’_7_]
o (i (&)
_1.[_3_A_}l o P ] + T [A.40]
| oz aT* | .

fl

Now, from the definition of the packing fraction, we have

T* ] 30 e[ 88 ] [A.41].
oT* ¢ oT*
Putting this into [A.40], we obtain
3
S = E - fig - fx-s
- {L[ 92H { [ oaH ) 4 f(l)]4} }T‘ L ] + I'*TfA.42]
T o J, T P ¢ OT* J e
From [A.29], the fourth term on the right hand side is zero. Therefore,
s = % —fy - fg+ [*T* = 5, — £, + T*T* [A.43]

From [A.39], we have the nondimensional specific heat at constant volume, i.e.,

Cy . )
= =T
v Nkg aT*

=%_f(1 [3’7] +T'T* [Adq]
o

where C, has units of J/particle’K. Other properties include the change in pres-

sure with temperature at constant volume and number of particles, i.e.,

= = _a£. — _a_ 1
pICv = oK, = [ 5T |y = 3T }V’N[ﬁ PAy

= kaB{p + T* 31'19:),,,;} [A.45].
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Therefore,

* ap
cg=p+ T <. [ ]

From [A.38], we have

() ([,

oT* oT* T*
. ¢ . o
+ {[fl_gl) + 7] + EAH,,A7é + nAHm} IB_T‘_ B
1 ®rvk
+ =['T [A.47].
The isothermal bulk modulus is given by
=,[E] -2 } 1
K= p[ 50 ) ox S T_[ﬂ‘ PP
= flplp + p;[—p,] ] [A.48].
apN T
The nondimensional form of this is then
_— * 3p
ke = Ko/ =71 + p| — l [A.49].
dpy T

We note that the macroscopic structure factor of the liquid, a(0), is equal to

1/k. From [A.38], we have

o[ 22 =f;{f(1)+—AH + [f(2)+—AH ]}
aﬂN T T*

{ 31 i + T—AH + 7t + T—AHM]

il 2
"1 e g

- -;-%21“T‘ [A.50].
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The second term on the right-hand side of this last expression may be written

. 0 } {3?; m, 1 1 }
—_— —fs’ + —AH | + AH, ¢ .
7’ aﬁ T'c é [PB T‘ ’7]] * ,C

By [A.29] and the fact that

we see that this second term is actually zero. Consequently,

«f O o . 1 o 1 *
PN[ _P‘ = 77{ [fn(sl) + nf}(s2)] + _.[AH,;, + ﬂAH,;,;,]} - 5%21-‘ T*
BpN ™ T

A.51].

With [A.33]-[A.51], we may calculate equilibrium thermodynamic properties that

are defined by ratios of the derivatives of f_,. For example, the equilibrium

thermodynamic Griineisen’s parameter is given by

7S

v=—

¢y

while the coefficient of thermal expansion is

a=2% — e 1 K

K; T*k, €
From this, a natural nondimensional form of a is
* € Ty
o' = —a = ——
kg k. T*

The nondimensional specific heat at constant pressure is then
¢ = (1 + a*~T")

And the nondimensional isentropic bulk modulus is given by

k= MT:&=1%+ kT = ky + Pﬂ%"%ﬁT

= k; + ()

[A.52],

[A.53].

[A.54]

[A.55].

[A.56].
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Lastly, the velocity of sound in the liquid is given by
) b
v, = {51} — {%-e} [T A.57],

P

where N, is Avogadro’s number and M is the molar mass of the liquid. The

nondimensional form of vy is then

= [T [A.58].
To calculate the above expressions for the equilibrium properties of the liquid,
we require an expression for (84/0T"),.. From [A.30], [A.31] and the implicit
function theorem, we have ¢ = &T*,py) and # = #(T*p}) in equilibrium. In
many of the above expressions, we have used the relation, from [A.31]

ol X
[ 2 ] —0 ] _ 3% ] [A.59].
aT* ) oT* e Lot ),

From [A.30], we have

{ﬂ}={§_ _Q’l.] _ 30 _3_0.] }[f(l).|._1_AHA]
aT* ¢ Lot ¢ Lot ) "™ A

4{[f(2)+ H..]{—a—'i-} + —AH, { 3c} -%AH}
¢ T* M T o T* oT* P T*

1 on
+_.|:AH“{_} + AH..
Tt ,Cn aTt p‘: cC

{Bc} ——2AH =0 [A59].
oT* o T

Therefore, from [A.58] and [A.59], we have

{ olnf }
oInT* o

3[¢AH; + 37AH ]
6A(T*L{) + AH ] + 0#(T*Q) + AH ] + 6¢0AH ,, + ¢AH

[A.60),
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the desired expression for the change in the equilibrium packing fraction with

nondimensional temperature at constant nondimensional number density.

To fit this model to the experimental Fe melting data of Williams and
Jeanloz (1986), given as T,(P)+AT,(AP), we require an expression for the tem-
perature as a function of pressure in the liquid at the conditions along the phase

boundary. Rearranging [A.30], we obtain

37t (1)

T = ET‘(é,ﬁ;x‘,w‘) = {éAHé + 37AH ;’} [A61]

for temperature in the liquid, with £ = €/ks. From [A.38], we have a relation

for pressure in the liquid, t.e.,

R

P = <7 B op"(&,75)"w" )
=R VT + Loy Er()T*
=M Ep{nAHﬁ + (1+if )T + SR I'(p)T } [A.62],

where I'(p) is assumed to be a known function of mass density, p, and so not a
“free” parameter. Now, using the definition of the packing fraction, we may

write ¢ as a function of mass density, p, and packing fraction, #, i.e.,

B
6= -l—{ﬂ} [A.63],
¢ Ump

where we have introduced ¢ = p}/p, which is related to o, t.e.,

B

M
o= g{ X } (A.64].
With these, we have
T =©eT*(p,\*w*5) [A.65]

and

R £ ANt %
P = -M_' Epp (Pﬂ?;k W 9Ea§) [A-66]7
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giving us 2 equations relating 4 variables, i.e., P, T, p and #, and 4 parameters,

t.e, E, \*, w*, ¢. These are the expressions we use in the text.

Liquid-state transport properties

With the hard-sphere model for Fy(T,p), we may also estimate near-
equilibrium transport properties for Fe from the theory of Longuet-Higgens and
Pople (1956) for a dense fluid of hard spheres. They derive the following rela-
tionships for the shear viscosity, u, bulk viscosity, x, and coefficient of self-
diffusion, D, assuming g,(r) is independent of the rate of strain, and for the
thermal conductivity, k, assuming g,(r) is independent of the temperature gra-

dient:

w= 2 {E}%T‘%ﬁ(p-l) [A.67]
5md? | R
5
_5k
k= > mp [A.69],
and
b
d{ me T*%
=5 7 0

respectively. As discussed by Longuet-Higgins and Pople, the absolute values of
these expressions do not reflect the influence of attractive interparticle forces.
They suggest that this may be remedied by replacing the pressure, P, with the
“kinetic pressure,” T(8P/8T), to account for the idea that attractive forces
reduce the effective pressure in a real fluid below P, the external pressure,
because they result in a decrease of internal (‘“cohesive”) energy with density.

The pressure and kinetic pressure are related by the identity
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OE ( 5P
[W T—T[ﬁ V—P [A.71]

where E=F+TS is the internal energy. From this, we see that their suggestion
implies that (3E/8V)/~0; this is strictly true for a fluid of hard spheres, since
F+TS=3k,T=E for such a fluid. Since the liquid-state model used in this work
is based on a potential that includes attractive interparticle interactions, we

incorporate this suggestion into our calculations by replacing p with ~c, in

[A.67]-[A.70], where ~c, is given by [A.46] above.

§7. Appendix B: High-Temperature Solid-State Model Expressions

In this appendix we document the relation between the exact solid-state
model relations based on [3.1] and the high-temperature approximation (equa-
tions [3.7]-[3.10]) used in the text. From the expression for F(T,p), [3.1], we

have 1) the pressure:

oF 3R 1
P(T,p) = p{m}T = P(0) + ZEPELOT + o0 T? (B

with

do
dlnp

P(0,p) = p{ } + %VRpGD ,

2) The molar entropy:

3vR{ 25,(x;) - Inlt - e‘XD]} +QT B.2],

3) The isothermal bulk modulus:

K{T,) = p{-g—lz } .= K(0,p)

3R

+ M P"ID(I L 3'7D)ED(XD)T + QVRP%{
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L - 2
+ SN pw(l - W)QT [B.3],

with

K(0,p) = P(0,p) + p{p{%} + pQ{%g}} + p{ Z’ﬁ% (% = qu)}

4) The molar heat capacity at constant volume:

3%

= 3VR{4ED(£D) [—&)_—]} +QT (B4,

CAT,p) = —T{ &F }

aT? f,

and 5) the change in pressure with temperature at constant volume (density),

te.,

pe(Tp) = oK, = {—!{:}

3R

o AP YAR [—f—]} + gl B3],

The high-temperature approximations (§,=6,(p)/T<<1) to P, S, C, and K,
may be obtained from [B.2]-[B.5] by expanding E (&) and the other £, functions

into their high-temperature forms, i.e., as §,—0,

E,= 3 fnx2{1—}-x+—l-x2+ }dx
0

2 12

—1_3 BEPY 3
—1-36+ Zet+ o) B.6),

Infl - e &) = In&, + In(1 - %ED + o)

— In¢, - %e,, + %5,3 + 0(&d) B.7],
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and

&
o-1

1 1 .o 3
- = — (o)
1-56+ 5& + O&)
Putting these into [3.1] in the text, we obtain, to O(&3):

F(T,p) = ®(p) + 3R { Ing, -1 + -4%53}T - -;-QTQ

P(T,p) =P(0,p) + 3VRp’7D{1 + 21—0602} T + %prTQ

with
| de@
P(Ovp) = p{ dlnp} ’
S =3uR{i-1n[e] + lfg’} + QT
3 P40
K, = K(0,0)
LR . Loy L 2} 1 D e
+ Vi p’yp{(l Q)1 + 2OED]+ IOED T+ 2pw(l—w)MT

with K (0,p) now given by
d¢ d%®
0,p) = {2 [_.]+ 2[__ }
Kl0p) =0 2 dp g dp?

3R 1 Q
prey = el = FTEowll - 55 6] + oy T

and
1
C,=3R[1- -2-6{,)2] + QT

These are the basic solid-state model relations used in the text.

B.8].

B.9],

[B.10],

[B.11],

[B.12],

[B.13],

[B.14].
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